RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics

      한글로보기

      https://www.riss.kr/link?id=A103792026

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A 2D incompressible smoothed particle hydrodynamics (SPH) method is implemented to simulate the impact flows associated withcomplex free surface. In the incompressible SPH framework, pressure Poisson equation (PPE) based on the projection method is solvedusing a semi-implicit scheme to evaluate the correct pressure distribution. In this procedure, the PPE comprises the divergence-free velocitycondition and density-invariance condition with a relaxation parameter. To test the accuracy and efficiency of the proposed incompressibleSPH method, it was applied to several sample problems with largely distorted free surface, including 2D dam-break over horizontaland inclined planes with different inclination angles, as well as the water entry of a circular cylinder into a tank. We mainly focusedon the time history of impact pressure on various positions of the solid boundary and temporal evolution of free surface profiles.

      The results showed reasonably good agreement with experimental data. However, further improvement is needed for extremely highimpact flow.
      번역하기

      A 2D incompressible smoothed particle hydrodynamics (SPH) method is implemented to simulate the impact flows associated withcomplex free surface. In the incompressible SPH framework, pressure Poisson equation (PPE) based on the projection method is so...

      A 2D incompressible smoothed particle hydrodynamics (SPH) method is implemented to simulate the impact flows associated withcomplex free surface. In the incompressible SPH framework, pressure Poisson equation (PPE) based on the projection method is solvedusing a semi-implicit scheme to evaluate the correct pressure distribution. In this procedure, the PPE comprises the divergence-free velocitycondition and density-invariance condition with a relaxation parameter. To test the accuracy and efficiency of the proposed incompressibleSPH method, it was applied to several sample problems with largely distorted free surface, including 2D dam-break over horizontaland inclined planes with different inclination angles, as well as the water entry of a circular cylinder into a tank. We mainly focusedon the time history of impact pressure on various positions of the solid boundary and temporal evolution of free surface profiles.

      The results showed reasonably good agreement with experimental data. However, further improvement is needed for extremely highimpact flow.

      더보기

      참고문헌 (Reference)

      1 박준수, "슬래밍 충격 압력에 대한 연구" 한국해양공학회 23 (23): 67-73, 2009

      2 S. Marrone, "d -SPH model for simulating violent impact flows" 200 (200): 1526-1542, 2011

      3 R. Zhao, "Water entry of arbitrary two-dimensional sections with and without flow separation" 408-423, 1997

      4 G. Kai, "Water entry of a wedge based on SPH model with an improved boundary treatment" 21 (21): 750-757, 2009

      5 M. Greenhow, "Water entry and exit of horizontal circular cylinders" 355 : 551-563, 1997

      6 C. W. Hirt, "Volume of fluid (VOF)method for dynamics of free boundaries" 39 : 201-225, 1981

      7 G. Oger, "Twodimensional SPH simulations of wedge water entries" 213 : 803-822, 2006

      8 S. Shao, "Turbulence particle models for tracking free surfaces" IAHR 43 (43): 276-289, 2005

      9 A. Colagrossi, "Theoretical considerations on the free surface role in the SPH model" 79 (79): 1-13, 2009

      10 F. Macià, "Theoretical analysis of the no-slip boundary condition enforcement in SPH methods" 125 (125): 1091-1121, 2011

      1 박준수, "슬래밍 충격 압력에 대한 연구" 한국해양공학회 23 (23): 67-73, 2009

      2 S. Marrone, "d -SPH model for simulating violent impact flows" 200 (200): 1526-1542, 2011

      3 R. Zhao, "Water entry of arbitrary two-dimensional sections with and without flow separation" 408-423, 1997

      4 G. Kai, "Water entry of a wedge based on SPH model with an improved boundary treatment" 21 (21): 750-757, 2009

      5 M. Greenhow, "Water entry and exit of horizontal circular cylinders" 355 : 551-563, 1997

      6 C. W. Hirt, "Volume of fluid (VOF)method for dynamics of free boundaries" 39 : 201-225, 1981

      7 G. Oger, "Twodimensional SPH simulations of wedge water entries" 213 : 803-822, 2006

      8 S. Shao, "Turbulence particle models for tracking free surfaces" IAHR 43 (43): 276-289, 2005

      9 A. Colagrossi, "Theoretical considerations on the free surface role in the SPH model" 79 (79): 1-13, 2009

      10 F. Macià, "Theoretical analysis of the no-slip boundary condition enforcement in SPH methods" 125 (125): 1091-1121, 2011

      11 A. Colagrossi, "Theoretical Analysis and numerical verification of the consistency of viscous SPH formulation in simulating free-surface flows" 84 : 026705-, 2011

      12 M. Landrini, "The fluid mechanics of splashing bow waves on ships: A hybrid-BEM-SPH analysis" 53 : 111-127, 2012

      13 M. Tanaka, "Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility" 229 : 4279-4290, 2010

      14 R. A. Gingold, "Smoothed particle hydrodynamics:theory and application to non-spherical stars" 181 : 375-389, 1977

      15 G. R. Liu, "Smoothed Particle Hydrodynamic, a mesh free particle method" World scientific Publishing Co. Pte. Ltd 2003

      16 A. M. Aly, "Simulation of free falling rigid body into water by a stabilized incompressible SPH method" 1 (1): 207-222, 2011

      17 I. Federico, "Simulating 2D open-channel flows through an SPH model" 34 : 35-46, 2012

      18 H. Gotoh, "SPH-LES model for numerical investigation of wave interaction with partially immersed breakwater" 46 (46): 39-63, 2001

      19 M. Antuono, "Propagation of gravity waves through an SPH scheme with numerical diffusive terms" 182 (182): 866-877, 2011

      20 H. Miyata, "Potential Flow of Fluids" Comp. Mech. Pub 149-176, 1995

      21 A. Colagrossi, "Particle packing algorithm for SPH schemes" 183 : 1641-1653, 2012

      22 T. H. Lee, "Numerical simulations of hydraulic jumps in water sloshing and water impacting" 124 : 215-226, 2002

      23 D. Violeau, "Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview" 53 : 277-304, 2007

      24 M. Antuono, "Numerical diffusive terms in weakly-compressible SPH schemes" 183 : 2570-2580, 2012

      25 M. Greenhow, "Non-linear free surface effects:experiments and theory" Department of Ocean Engineering, MIT 1983

      26 S. Koshizuka, "Moving-particle semi-implicit method for fragmentation of incompressible fluid" 123 (123): 421-434, 1996

      27 H. Liu, "Modelling water entry of a wedge by multiphase SPH method" 9 : 2009

      28 A. M. Aly, "Modelling of surface tension force for free surface flows in ISPH method" 23 : 3-, 2013

      29 J. P. Morris, "Modeling low reynolds number incompressible flows using SPH" 136 : 214-226, 1997

      30 H. Gotoh, "Key issues in the particle method for computation of wave breaking" 53 : 171-179, 2006

      31 M. Ellero, "Incompressible smoothed particle hydrodynamics" 226 : 1731-1752, 2007

      32 S. Shao, "Incompressible SPH simulation of water entry of a free-falling object" 59 : 91-115, 2009

      33 S. D. Shao, "Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface" 26 : 787-800, 2003

      34 M. Antuono, "Free-surface flows solved by means of SPH schemes with numerical diffusive terms" 181 (181): 532-549, 2010

      35 P. Tyv, "Free-surface flow due to impulsive motion of a submerged circular cylinder" 286 : 67-101, 1995

      36 G. Colicchio, "Experimental and numerical investigation of the water-entry and water-exit of a circular cylinder" 24 : 2009

      37 A. Khayyer, "Enhanced predictions of wave impact pressure by improved incompressible SPH methods" 31 : 111-131, 2009

      38 R. Panahi, "Development of a VoF-fractional step solver for floating body motion simulation" 28 : 171-181, 2006

      39 A. Khayyer, "Corrected incompressible SPH method for accurate water-surface tracking in breaking waves" 55 : 236-250, 2008

      40 E. S. Lee, "Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method" 227 (227): 8417-8436, 2008

      41 X. Y. Hu, "An incompressible multi-phase SPH method" 227 : 264-278, 2007

      42 Liu Xin, "An improved incompressible SPH model for simulation of wave-structure interaction" 71 : 113-123, 2013

      43 S. J. Cummins, "An SPH projection method" 152 (152): 584-607, 1999

      44 KMT Kleefsman, "A volume-of-fluid based simulation method for wave impact problems" 206 : 363-393, 2005

      45 L. B. Lucy, "A numerical approach to the testing of the fusion process" 88 : 1013-1024, 1977

      46 M. Sussman, "A level set approach for computing solutions to incompressible two-phase flow" 114 : 146-159, 1994

      47 P. Lin, "A fixed-grid model for simulation of a moving body in free surface flows" 36 : 549-561, 2007

      48 Mitsuteru Asai, "A Stabilized Incompressible SPH Method by Relaxing the Density Invariance Condition" Hindawi Publishing Corporation 2012 : 1-24, 2012

      49 S. Marrone, "A 2D+t SPH model to study the breaking wave pattern generated by fast ships" 27 (27): 1199-1215, 2011

      50 E. S. Lee, "2D flow past a square cylinder in a closed channel" 3 : 2006

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼