RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      QRS Complex Detection Based on Primitive

      한글로보기

      https://www.riss.kr/link?id=A105112457

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The detection of the QRS complex is one of the mostimportant issues in electrocardiogram (ECG) signal analysis. Althoughresearch on the detection of the R-peak has demonstrated ahigh detection rate through a diverse number of studies, researchon the detection of the onset and offset boundaries of the QRS complexhas proven to be difficult, as the locations of these endpointsare often unclear, and the detection results are difficult to interpret.
      Hence, detection research through improved algorithms continuesto be an important component of the ECG signal analysis, especiallygiven the importance of the QRS complexs role in the diagnosisof arrhythmia through measuring the length of the onset andoffset of the QRS complex. This paper proposes an improved algorithmthat focuses on the primitive of the QRS complex for detectingthe onset and offset of the complex based on the morphologicalcharacteristics of the QRS complex. The proposed algorithm wastested through experiments based on QT database (QT-DB) dataprovided by Physionet, and the outcome revealed not only the reliabledetection of the QRS complex boundaries but also results thatwere superior to the location information recorded in the QT-DB.
      번역하기

      The detection of the QRS complex is one of the mostimportant issues in electrocardiogram (ECG) signal analysis. Althoughresearch on the detection of the R-peak has demonstrated ahigh detection rate through a diverse number of studies, researchon the d...

      The detection of the QRS complex is one of the mostimportant issues in electrocardiogram (ECG) signal analysis. Althoughresearch on the detection of the R-peak has demonstrated ahigh detection rate through a diverse number of studies, researchon the detection of the onset and offset boundaries of the QRS complexhas proven to be difficult, as the locations of these endpointsare often unclear, and the detection results are difficult to interpret.
      Hence, detection research through improved algorithms continuesto be an important component of the ECG signal analysis, especiallygiven the importance of the QRS complexs role in the diagnosisof arrhythmia through measuring the length of the onset andoffset of the QRS complex. This paper proposes an improved algorithmthat focuses on the primitive of the QRS complex for detectingthe onset and offset of the complex based on the morphologicalcharacteristics of the QRS complex. The proposed algorithm wastested through experiments based on QT database (QT-DB) dataprovided by Physionet, and the outcome revealed not only the reliabledetection of the QRS complex boundaries but also results thatwere superior to the location information recorded in the QT-DB.

      더보기

      참고문헌 (Reference)

      1 G. B. Moody, "The MIT-BIH arrhythmia database on CDROM and software for use with it" 185-188, 1990

      2 A. Taddei, "The European ST-T database: Development, distribution, and use" 177-180, 1990

      3 B. M. Oussama, "Extracting features from ECG and respiratory signals for automatic supervised classification of heartbeat using neural networks" 14 (14): 53-59, 2015

      4 M. E. Nygårds, "Delineation of the QRS complex using the envelope of the E. C. G." 21 (21): 538-547, 1983

      5 Tae-Hun Kim, "Curvature Based ECG Signal Compression for Effective Communication on WPAN" 한국통신학회 14 (14): 21-26, 2012

      6 H. Chan, "Continuous and Online Analysis of Heart Rate Variability" 29 (29): 227-234, 2005

      7 R. J. Huszar, "Basic dysrhythmias: Interpretation & management" Elsevier 2007

      8 D. B. Saadi, "Automatic real-time embedded QRS complex detection for a novel patch-type electrocardiogram recorder" 3 : 1-12, 2015

      9 P. Laguna, "Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database" 27 (27): 45-60, 1994

      10 A. Martinez, "Application of the phasor transform for automatic delineation of single-lead ECG fiducial points" 31 (31): 1467-, 2010

      1 G. B. Moody, "The MIT-BIH arrhythmia database on CDROM and software for use with it" 185-188, 1990

      2 A. Taddei, "The European ST-T database: Development, distribution, and use" 177-180, 1990

      3 B. M. Oussama, "Extracting features from ECG and respiratory signals for automatic supervised classification of heartbeat using neural networks" 14 (14): 53-59, 2015

      4 M. E. Nygårds, "Delineation of the QRS complex using the envelope of the E. C. G." 21 (21): 538-547, 1983

      5 Tae-Hun Kim, "Curvature Based ECG Signal Compression for Effective Communication on WPAN" 한국통신학회 14 (14): 21-26, 2012

      6 H. Chan, "Continuous and Online Analysis of Heart Rate Variability" 29 (29): 227-234, 2005

      7 R. J. Huszar, "Basic dysrhythmias: Interpretation & management" Elsevier 2007

      8 D. B. Saadi, "Automatic real-time embedded QRS complex detection for a novel patch-type electrocardiogram recorder" 3 : 1-12, 2015

      9 P. Laguna, "Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database" 27 (27): 45-60, 1994

      10 A. Martinez, "Application of the phasor transform for automatic delineation of single-lead ECG fiducial points" 31 (31): 1467-, 2010

      11 J. P. Madeiro, "An innovative approach of QRS segmentation based on firstderivative, Hilbert and wavelet transforms" 34 (34): 1236-1246, 2012

      12 A. I. Manriquez, "An algorithm for robust detection of QRS onset and offset in ECG signals" 857-860, 2008

      13 A. I. Manriquez, "An algorithm for QRS onset and offset detection in single lead electrocardiogram records" 541-544, 2007

      14 G. D. Clifford, "Advanced Methods And Tools for ECG Data Analysis" Artech House, Inc. 2006

      15 J. P. Martinez, "A wavelet-based ECG delineator : Evaluation on standard databases" 51 : 570-581, 2004

      16 J. Pan, "A real-time QRS detection algorithm" BME-32 : 230-236, 1985

      17 P. Laguna, "A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG" 673-676, 1997

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2005-01-01 평가 SCI 등재 (등재후보1차) KCI등재
      2004-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.74 0.09 0.53
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.42 0.34 0.264 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼