1 Parekh, S., "zUMIs : a fast and flexible pipeline to process RNA sequencing data with UMIs" 7 : 2018
2 Amir, E. D., "viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia" 31 : 545-552, 2013
3 Alquicira-Hernandez, J., "scPred:scPred: Cell type prediction at single-cell resolution"
4 Tian, L., "scPipe : a flexible R/bioconductor preprocessing pipeline for single-cell RNAsequencing data" 14 : e1006361-, 2018
5 Clark, S. J., "scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells" 9 : 781-, 2018
6 Tang, F., "mRNASeq whole-transcriptome analysis of a single cell" 6 : 377-382, 2009
7 Petukhov, V., "dropEst : pipeline for accurate estimation of molecular counts in droplet-based singlecell RNA-seq experiments" 19 : 78-, 2018
8 Setty, M., "Wishbone identifies bifurcating developmental trajectories from single-cell data" 34 : 637-645, 2016
9 van der Maaten, L., "Visualizing data using t-SNE" 9 : 2579-2605, 2008
10 Chen, M., "VIPER : variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies" 19 : 196-, 2018
11 Smith, T., "UMI-tools : modeling sequencing errors in unique molecular identifiers to improve quantification accuracy" 27 : 491-499, 2017
12 Mclnnes, L., "UMAP : uniform manifold approximation and projection for dimension reduction. arXiv. 1802"
13 Nagalakshmi, U., "The transcriptional landscape of the yeast genome defined by RNA sequencing" 320 : 1344-1349, 2008
14 Kolodziejczyk, A. A., "The technology and biology of single-cell RNA sequencing" 58 : 610-620, 2015
15 Lein, E., "The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing" 358 : 64-69, 2017
16 Trapnell, C., "The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells" 32 : 381-386, 2014
17 Satija, R., "Spatial reconstruction of single-cell gene expression data" 33 : 495-502, 2015
18 Picelli, S., "Smart-seq2 for sensitive full-length transcriptome profiling in single cells" 10 : 1096-1098, 2013
19 Street, K., "Slingshot : cell lineage and pseudotime inference for single-cell transcriptomics" 19 : 477-, 2018
20 Bendall, S. C., "Singlecell trajectory detection uncovers progression and regulatory coordination in human B cell development" 157 : 714-725, 2014
21 Gupta, I., "Singlecell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells" 36 : 1197-1202, 2018
22 Chappell, L., "Single-cell(multi)omics technologies" 19 : 15-41, 2018
23 Hou, Y., "Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas" 26 : 304-319, 2016
24 Shalek, A. K., "Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells" 498 : 236-240, 2013
25 Kester, L., "Single-cell transcriptomics meets lineage tracing" 23 : 166-179, 2018
26 Faridani, O. R., "Single-cell sequencing of the small-RNA transcriptome" 34 : 1264-1266, 2016
27 Tabula Muris, C., "Single-cell ranscriptomics of 20 mouse organs creates a Tabula Muris" 562 : 367-372, 2018
28 Rosenberg, A. B., "Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding" 360 : 176-182, 2018
29 Luo, C., "Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex" 357 : 600-604, 2017
30 Grun, D., "Single-cell messenger RNA sequencing reveals rare intestinal cell types" 525 : 251-255, 2015
31 Teschendorff, A. E., "Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome" 8 : 15599-, 2017
32 Shin, J., "Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis" 17 : 360-372, 2015
33 Kowalczyk, M. S., "Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells" 25 : 1860-1872, 2015
34 Papalexi, E., "Single-cell RNA sequencing to explore immune cell heterogeneity" 18 : 35-45, 2018
35 Kolodziejczyk, A. A., "Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation" 17 : 471-485, 2015
36 Hu, Y., "Simultaneous profiling of transcriptome and DNA methylome from a single cell" 17 : 88-, 2016
37 Stoeckius, M., "Simultaneous epitope and transcriptome measurement in single cells" 14 : 865-868, 2017
38 Perfetto, S. P., "Seventeen-colour flow cytometry : unravelling the immune system" 4 : 648-655, 2004
39 Gierahn, T. M., "Seq-well : portable, low-cost RNA sequencing of single cells at high throughput" 14 : 395-398, 2017
40 Bagnoli, J. W., "Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq" 9 : 2937-, 2018
41 Kiselev, V. Y., "Scmap : projection of single-cell RNA-seq data across data sets" 15 : 359-362, 2018
42 McCarthy, D. J., "Scater : pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R" 33 : 1179-1186, 2017
43 Tanay, A., "Scaling single-cell genomics from phenomenology to mechanism" 541 : 331-338, 2017
44 Welch, J. D., "SLICER : inferring branched, nonlinear cellular trajectories from single cell RNA-seq data" 17 : 106-, 2016
45 Budnik, B., "SCoPEMS : mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation" 19 : 161-, 2018
46 Aibar, S., "SCENIC : single-cell regulatory network inference and clustering" 14 : 1083-1086, 2017
47 Kiselev, V. Y., "SC3 : consensus clustering of single-cell RNA-seq data" 14 : 483-486, 2017
48 Huang, M., "SAVER : gene expression recovery for single-cell RNA sequencing" 15 : 539-542, 2018
49 Qiu, X., "Reversed graph embedding resolves complex single-cell trajectories" 14 : 979-982, 2017
50 Wagner, A., "Revealing the vectors of cellular identity with single-cell genomics" 34 : 1145-1160, 2016
51 Aran, D., "Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage" 20 : 163-172, 2019
52 Li, H., "Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors" 49 : 708-718, 2017
53 van Dijk, D., "Recovering gene interactions from single-cell data using data diffusion" 174 : 716 e727-729 e727, 2018
54 Schiebinger, G., "Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming"
55 Lummertz da Rocha, E., "Reconstruction of complex single-cell trajectories using CellRouter" 9 : 892-, 2018
56 Li, B., "RNA-seq gene expression estimation with read mapping uncertainty" 26 : 493-500, 2010
57 La Manno, G., "RNA velocity of single cells" 560 : 494-498, 2018
58 Sasagawa, Y., "Quartz-Seq2 : a highthroughput single-cell RNA-sequencing method that effectively uses limited sequence reads" 19 : 29-, 2018
59 Sasagawa, Y., "Quartz-Seq : a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity" 14 : R31-, 2013
60 Islam, S., "Quantitative single-cell RNA-seq with unique molecular identifiers" 11 : 163-166, 2014
61 Bantscheff, M., "Quantitative mass spectrometry in proteomics : critical review update from 2007 to the present" 404 : 939-965, 2012
62 Svensson, V., "Power analysis of single-cell RNA-sequencing experiments" 14 : 381-387, 2017
63 Lun, A. T., "Pooling across cells to normalize single-cell RNA sequencing data with many zero counts" 17 : 75-, 2016
64 Dixit, A., "Perturb-seq : dissecting molecular circuits with scalable singlecell RNA profiling of pooled genetic screens" 167 : 1853-1866, 2016
65 Angermueller, C., "Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity" 13 : 229-232, 2016
66 Vallejos, C. A., "Normalizing single-cell RNA sequencing data : challenges and opportunities" 14 : 565-571, 2017
67 Raj, A., "Nature, nurture, or chance : stochastic gene expression and its consequences" 135 : 216-226, 2008
68 Peterson, V. M., "Multiplexed quantification of proteins and transcripts in single cells" 35 : 936-939, 2017
69 Kang, H. M., "Multiplexed droplet single-cell RNA-sequencing using natural genetic variation" 36 : 89-94, 2018
70 Briggs, J. A., "Mouse embryonic stem cells can differentiate via multiple paths to the same state" 6 : e26945-, 2017
71 Jaitin, D. A., "Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types" 343 : 776-779, 2014
72 Zheng, G. X., "Massively parallel digital transcriptional profiling of single cells" 8 : 14049-, 2017
73 Zheng, G. X., "Massively parallel digital transcriptional profiling of single cells" 8 : 14049-, 2017
74 Spitzer, M. H., "Mass cytometry : single cells, many features" 165 : 780-791, 2016
75 Han, X., "Mapping the mouse cell atlas by microwell-seq" 172 : 1091-1107, 2018
76 Mortazavi, A., "Mapping and quantifying mammalian transcriptomes by RNA-Seq" 5 : 621-628, 2008
77 McGinnis, C. S., "MULTI-seq : scalable sample multiplexing for single-cell RNA sequencing using lipid-tagged indices"
78 Finak, G., "MAST : a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data" 16 : 278-, 2015
79 Cao, J., "Joint profiling of chromatin accessibility and gene expression in thousands of single cells" 361 : 1380-1385, 2018
80 Fuzik, J., "Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes" 34 : 175-183, 2016
81 Butler, A., "Integrating single-cell transcriptomic data across different conditions, technologies, and species" 36 : 411-420, 2018
82 Dey, S. S., "Integrated genome and transcriptome sequencing of the same cell" 33 : 285-289, 2015
83 Kim, J. K., "Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data" 14 : R7-, 2013
84 Andrews, T. S., "Identifying cell populations with scRNASeq" 59 : 114-122, 2018
85 Velten, L., "Human haematopoietic stem cell lineage commitment is a continuous process" 19 : 271-281, 2017
86 Macosko, E. Z., "Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets" 161 : 1202-1214, 2015
87 Lister, R., "Highly integrated single-base resolution maps of the epigenome in Arabidopsis" 133 : 523-536, 2008
88 Wolf, F. A., "Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells"
89 Jiang, L., "GiniClust : detecting rare cell types from single-cell gene expression data with Gini index" 17 : 144-, 2016
90 Macaulay, I. C., "G&T-seq : parallel sequencing of single-cell genomes and transcriptomes" 12 : 519-522, 2015
91 Eldar, A., "Functional roles for noise in genetic circuits" 467 : 167-173, 2010
92 Ramskold, D., "Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells" 30 : 777-782, 2012
93 Chen, X., "From tissues to cell types and back : single-cell gene expression analysis of tissue architecture" 1 : 29-51, 2018
94 Zappia, L., "Exploring the singlecell RNA-seq analysis landscape with the scRNA-tools database" 14 : e1006245-, 2018
95 Bullard, J. H., "Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments" 11 : 94-, 2010
96 Derr, A., "End sequence analysis toolkit(ESAT)expands the extractable information from single-cell RNA-seq data" 26 : 1397-1410, 2016
97 Cadwell, C. R., "Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq" 34 : 199-203, 2016
98 Klein, A. M., "Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells" 161 : 1187-1201, 2015
99 Lun, A., "Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data"
100 Jaitin, D. A., "Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq" 167 : 1883-1896, 2016
101 Treutlein, B., "Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq" 534 : 391-395, 2016
102 Becht, E., "Dimensionality reduction for visualizing single-cell data using UMAP" 37 : 38-44, 2018
103 Haghverdi, L., "Diffusion pseudotime robustly reconstructs lineage branching" 13 : 845-848, 2016
104 Anders, S., "Differential expression analysis for sequence count data" 11 : R106-, 2010
105 Grun, D., "De novo prediction of stem cell identity using singlecell transcriptome data" 19 : 266-277, 2016
106 Cannoodt, R., "Computational methods for trajectory inference from single-cell transcriptomics" 46 : 2496-2506, 2016
107 Stegle, O., "Computational and analytical challenges in single-cell transcriptomics" 16 : 133-145, 2015
108 Cao, J., "Comprehensive single-cell transcriptional profiling of a multicellular organism" 357 : 661-667, 2017
109 Ilicic, T., "Classification of low quality cells from single-cell RNA-seq data" 17 : 29-, 2016
110 Kim, J. K., "Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression" 6 : 8687-, 2015
111 Islam, S., "Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq" 21 : 1160-1167, 2011
112 Ullal, A. V., "Cancer cell profiling by barcoding allows multiplexed protein analysis in fine-needle aspirates" 6 : 219ra219-, 2014
113 Hashimshony, T., "CEL-Seq2 : sensitive highly-multiplexed single-cell RNA-seq" 17 : 77-, 2016
114 Hashimshony, T., "CEL-Seq : single-cell RNA-Seq by multiplexed linear amplification" 2 : 666-673, 2012
115 Marco, E., "Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape" 111 : E5643-5650, 2014
116 Soneson, C., "Bias, robustness and scalability in single-cell differential expression analysis" 15 : 255-261, 2018
117 Kharchenko, P. V., "Bayesian approach to single-cell differential expression analysis" 11 : 740-742, 2014
118 Haghverdi, L., "Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors" 36 : 421-427, 2018
119 Vallejos, C. A., "BASiCS : bayesian analysis of single-cell sequencing data" 11 : e1004333-, 2015
120 Buttner, M., "Assessment of batch-correction methods for scRNA-seq data with a new test metric"
121 Li, W. V., "An accurate and robust imputation method scImpute for single-cell RNA-seq data" 9 : 997-, 2018
122 Brennecke, P., "Accounting for technical noise in single-cell RNA-seq experiments" 10 : 1093-1095, 2013
123 Alavi, A., "A web server for comparative analysis of single-cell RNA-seq data" 9 : 4768-, 2018
124 Duo, A., "A systematic performance evaluation of clustering methods for single-cell RNA-seq data" 7 : 1141-, 2018
125 Lun, A. T., "A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor" 5 : 2122-, 2016
126 Robinson, M. D., "A scaling normalization method for differential expression analysis of RNA-seq data" 11 : R25-, 2010