RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      나노물질을 매개로 한 생물학적 요소 간의 선택적 상호작용의 식별 및 이의 바이오센서로의 응용

      한글로보기

      https://www.riss.kr/link?id=T16692628

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In biological systems, numerous biological components work with complexed pathway, but a series of procedures of reaction cascade are regulated in a sophisticated manner. As the key components involved in sophisticated regulation are discovered, many researchers have published their studies about engineering application of the biological system. In this work, among the various biological reactions, we focused on identification strategy of selective coupling reactions between biological components for biosensor applications. In order for identification of reaction signal, we used polydiacetylene (PDA) nanomaterial and gold nanoparticle (AuNP) which has unique optical properties. This thesis divided to four chapters. In first chapter, we described research background and, especially introduced physical and optical properties of nanomaterials to aid understanding of this study. In second chapter, we described several identification results for engineering application that based on PDA nanomaterial. We developed hydrogel encapsulated PDA based genetically modified (GM) crop detection sensor and fish-gill like microfluidic channel embedded PDA sensor for bacteria detection, and PDA functionalized paper-based toxin, bacterial spore, detection kit. In third chapter, we introduced AuNP based identification result and engineering applications. We developed AuNP coated plastic chip based portable GM crop detection system that utilize localized surface plasmon resonance (LSPR) phenomenon of AuNP, and we introduced simplified bioreceptor evaluation kit based on AuNP embedded lateral flow immunoassay (LFIA) strip. In forth chapter, we summarized this work and overlooked future research. Through this study, we could be able to identify invisible biological coupling interactions for engineering applications. We expected that the detection and evaluation platform that developed in this study for specific purpose could be able to apply in practical application such as the point-of-care testing (POCT) platform.
      번역하기

      In biological systems, numerous biological components work with complexed pathway, but a series of procedures of reaction cascade are regulated in a sophisticated manner. As the key components involved in sophisticated regulation are discovered, many ...

      In biological systems, numerous biological components work with complexed pathway, but a series of procedures of reaction cascade are regulated in a sophisticated manner. As the key components involved in sophisticated regulation are discovered, many researchers have published their studies about engineering application of the biological system. In this work, among the various biological reactions, we focused on identification strategy of selective coupling reactions between biological components for biosensor applications. In order for identification of reaction signal, we used polydiacetylene (PDA) nanomaterial and gold nanoparticle (AuNP) which has unique optical properties. This thesis divided to four chapters. In first chapter, we described research background and, especially introduced physical and optical properties of nanomaterials to aid understanding of this study. In second chapter, we described several identification results for engineering application that based on PDA nanomaterial. We developed hydrogel encapsulated PDA based genetically modified (GM) crop detection sensor and fish-gill like microfluidic channel embedded PDA sensor for bacteria detection, and PDA functionalized paper-based toxin, bacterial spore, detection kit. In third chapter, we introduced AuNP based identification result and engineering applications. We developed AuNP coated plastic chip based portable GM crop detection system that utilize localized surface plasmon resonance (LSPR) phenomenon of AuNP, and we introduced simplified bioreceptor evaluation kit based on AuNP embedded lateral flow immunoassay (LFIA) strip. In forth chapter, we summarized this work and overlooked future research. Through this study, we could be able to identify invisible biological coupling interactions for engineering applications. We expected that the detection and evaluation platform that developed in this study for specific purpose could be able to apply in practical application such as the point-of-care testing (POCT) platform.

      더보기

      목차 (Table of Contents)

      • 1. CHAPTER 1. INTRODUCTION 1
      • 1.1. Introduction 2
      • Identification of Coupling interaction between biological components and their biosensor applications 2
      • Nanomaterial assisted identification of coupling interaction between biological components 3
      • Polydiacetylene (PDA) nanomaterialbased identification 4
      • 1. CHAPTER 1. INTRODUCTION 1
      • 1.1. Introduction 2
      • Identification of Coupling interaction between biological components and their biosensor applications 2
      • Nanomaterial assisted identification of coupling interaction between biological components 3
      • Polydiacetylene (PDA) nanomaterialbased identification 4
      • Gold nanoparticle (AuNP)based identification6
      • 1.2. Organization of dissertation 8
      • 2. CHAPTER 2. Polydiacetylene (PDA) based Platform 14
      • 2.1. Chromatic Biosensor for Detection of Phosphinothricin Acetyltransferase by Use of Polydiacetylene Vesicles Encapsulated within Automatically Generated Immunohydrogel Beads 15
      • Introduction 15
      • Materials and methods 18
      • Results and discussion 23
      • Conclusions 35
      • 2.2. An antibacterial microfluidic system with fish gill structure for the detection of Staphylococcus via enzymatic reaction on a chromatic polydiacetylene material caused by lysostaphin 36
      • Introduction 36
      • Materials and methods 38
      • Results and discussion 42
      • Conclusions 51
      • 2.3. AptamerConjugated Polydiacetylene Colorimetric Paper Chip for the Detection of Bacillus thuringiensis Spores 52
      • Introduction 52
      • Materials and methods 56
      • Results and discussion 59
      • Conclusions 68
      • 3. CHAPTER 3. Gold nanoparticle (AuNP) based Platform 69
      • 3.1. Identification of genetically modified DNA found in Roundup Ready soybean using gold nanoparticles 70
      • Introduction 70
      • Materials and methods 72
      • Results and discussion 74
      • Conclusions 83
      • 3.2. Receptor Norovirus Targeted Bioreceptor Screening Method based on Lateral Flow Immunoassay (LFIA) 84
      • Introduction 84
      • Materials and methods 86
      • Results and discussion 91
      • Conclusions105
      • 4. CHAPTER 4. CONCLUSION AND FUTURE WOTKS 106
      • 4.1. Conclusions 107
      • 4.2. Future Works 110
      • 5. REFERENCES 111
      더보기

      참고문헌 (Reference) 논문관계도

      1 Laurent, P., Wilson, J. M., "Fish gill morphology: Inside out", In pp. 192–213, 2002

      2 Ahn, D. J., Yang, D. H., Lee, Y. B., Lee, J. S., Lee, G. S., Kim, J. M., "A polydiacetylene-based fluorescent sensor chip", 127, 17580–17581 https://doi. org/10.1021/ja0547275, 2005

      3 Fernandez, T., "Detecting Genetically Modified Products in Food", 72, 454A-459A, 2000

      4 Byrne, H., Sharma, S., O’Kennedy, R. J., "Antibodies and antibody-derived analytical biosensors", 60, 9–18 https://doi. org/10.1042/EBC20150002, 2016

      5 Mahmood T, Yang PC, "Western blot: technique, theory, and trouble shooting", 4, 429–434 https://doi. org/10.4103/1947-2714.100998, 2012

      6 Jiang, L., Su, Y. L., Li, J. R., "Chromatic immunoassay based on polydiacetylene vesicles", 38, 29–33 https://doi. org/10.1016/j. colsurfb.2004.08.010, 2004

      7 Su, Y. L., "Assembly of polydiacetylene vesicles on solid substrates", 292, 271–276 https://doi. org/10.1016/j. jcis.2005.05.049, 2005

      8 Cheun, H. I., Watarai, M., Uchida, I., Takeshi, K., Makino, S. I., "Detection of anthrax spores from the air by real-time PCR", 33, 237–240 https://doi. org/10.1046/j.1472-765x.2001.00989. x, 2001

      9 Kerby, M. B., Tripathi, A., Legge, R. S., "Measurements of kinetic parameters in a microfluidic reactor", 78, 8273–8280 https://doi. org/10.1021/ac061189l, 2006

      10 Siegel, J. P., "The mammalian safety of Bacillus thuringiensis-based insecticides", 77, 13–21 https://doi. org/10.1006/jipa.2000.5000, 2001

      1 Laurent, P., Wilson, J. M., "Fish gill morphology: Inside out", In pp. 192–213, 2002

      2 Ahn, D. J., Yang, D. H., Lee, Y. B., Lee, J. S., Lee, G. S., Kim, J. M., "A polydiacetylene-based fluorescent sensor chip", 127, 17580–17581 https://doi. org/10.1021/ja0547275, 2005

      3 Fernandez, T., "Detecting Genetically Modified Products in Food", 72, 454A-459A, 2000

      4 Byrne, H., Sharma, S., O’Kennedy, R. J., "Antibodies and antibody-derived analytical biosensors", 60, 9–18 https://doi. org/10.1042/EBC20150002, 2016

      5 Mahmood T, Yang PC, "Western blot: technique, theory, and trouble shooting", 4, 429–434 https://doi. org/10.4103/1947-2714.100998, 2012

      6 Jiang, L., Su, Y. L., Li, J. R., "Chromatic immunoassay based on polydiacetylene vesicles", 38, 29–33 https://doi. org/10.1016/j. colsurfb.2004.08.010, 2004

      7 Su, Y. L., "Assembly of polydiacetylene vesicles on solid substrates", 292, 271–276 https://doi. org/10.1016/j. jcis.2005.05.049, 2005

      8 Cheun, H. I., Watarai, M., Uchida, I., Takeshi, K., Makino, S. I., "Detection of anthrax spores from the air by real-time PCR", 33, 237–240 https://doi. org/10.1046/j.1472-765x.2001.00989. x, 2001

      9 Kerby, M. B., Tripathi, A., Legge, R. S., "Measurements of kinetic parameters in a microfluidic reactor", 78, 8273–8280 https://doi. org/10.1021/ac061189l, 2006

      10 Siegel, J. P., "The mammalian safety of Bacillus thuringiensis-based insecticides", 77, 13–21 https://doi. org/10.1006/jipa.2000.5000, 2001

      11 Baek, J., Park, Y. J., Lee, Y. S., Kang, H., Jun, B. H., Jeong, D. H., "Preparation of polydiacetylene immobilized optically encoded beads", 355, 29–34 https://doi. org/10.1016/j. jcis.2010.12.018, 2011

      12 Duffy, D. C., Whitesides, G. M., Schueller, O. J. A., McDonald, J. C., "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)", 70, 4974–4984 https://doi. org/10.1021/ac980656z, 1998

      13 Jeong, D., Zhang, D., Rhee, G. S., Kwon, Y. K., Kim, Y. R., Kim, J. H., Kim, H. Y., "Development of a multiplex PCR method for testing six GM soybean events", 31, 366–371 https://doi. org/10.1016/j. foodcont.2012.10.015, 2013

      14 Ahn, D. J., Park, M. K., Oh, M. K., Kim, K. W., "Label-free detection of bacterial RNA using polydiacetylene-based biochip", 35, 44–49 https://doi. org/10.1016/j. bios.2012.01.043, 2012

      15 Barfoot, P., Brookes, G., "Global income and production impacts of using GM crop technology 1996-2013", 6, 13–46 https://doi. org/10.1080/21645698.2015.1022310, 2015

      16 Bale, S. S., Zhu, G., Salmon, S. L., Pangule, R. C., Metzger, D. W., Kane, R. S., Dordick, J. S., Dinu, C. Z., Brooks, S. J., "Antistaphylococcal nanocomposite films based on enzyme - Nanotube conjugates", 4, 3993–4000 (2010). https://doi. org/10.1021/nn100932t, 2010

      17 Israel, E., ben Shlush, I., Silbert, L., Porgador, A., Kolusheva, S., Jelinek, R., "Rapid chromatic detection of bacteria by use of a new biomimetic polymer sensor", 72, 7339–7344 https://doi. org/10.1128/AEM.01324-06, 2006

      18 Jeon, T. J., Yu, S., Kim, S. M., "Active micromixer using electrokinetic effects in the micro/nanochannel junction", 197, 289–294 https://doi. org/10.1016/j. cej.2012.05.044, 2012

      19 Botterman, J., van Montagu, M., de Block, M., Vandewiele, M., Thompson, C., Thoen, C., Movva, N. R., Leemans, J., Gosselé, V., Dockx, J., "Engineering herbicide resistance in plants by expression of a detoxifying enzyme", 6, 2513–2518 (1987). https://doi. org/10.1002/j.1460- 2075.1987. tb02537. x, 1987

      20 Jeon, T. J., Shin, Y. J., Lim, M. C., Kim, Y. R., Kim, H. Y., "Microbeadassisted PDA sensor for the detection of genetically modified organisms", 400, 777–785 https://doi. org/10.1007/s00216-011-4832-7, 2011

      21 Lu, J., Zhong, Y., Zheng, M., Zhao, Y., Zhang, J., Ye, W., Yang, J., Wu, W., Wu, W., Wen, J., Wang, Q., "An Aptamer-Based Biosensor for Colorimetric Detection of Escherichia coli O157:H7", 7 https://doi. org/10.1371/journal. pone.0048999, 2012

      22 Aćimović, S. S., Sanz, V., Renger, J., Quidant, R., Ortega, M. A., Maerkl, S. J., Kreuzer, M. P., Garcia-Cordero, J. L., Berthelot, J., "LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum", 14, 2636–2641 (2014). https://doi. org/10.1021/nl500574n, 2014

      23 Erlich, H. A., Stoffel, S., Scharf, S. J., Saiki, R. K., Mullis, K. B., Horn, G. T., Higuchi, R., Gelfand, D. H., "Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase", 239, 487–491, 1979

      24 Haeberle, S., Zengerle, R., Stetten, F. von, Roth, G., Mark, D., "Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications", 39, 1153–1182 https://doi. org/10.1039/b820557b, 2010

      25 Heniford, B. T., Yurko, Y., Vertegel, A., Shipp, J., Satishkumar, R., Sankar, S., Lincourt, A., "Evaluation of the antimicrobial activity of lysostaphin119 coated hernia repair meshes", 55, 4379– 4385 https://doi. org/10.1128/AAC.01056-10, 2011

      26 Jun, H., Lee, J., Kim, J., "Polydiacetylene-liposome microarrays for selective and sensitive mercury(II) detection", 21, 3674–3677 https://doi. org/10.1002/adma.200900639, 2009

      27 Chen, J., Yu, J., Wang, L., Sun, G., Li, Y., Yin, X., Ke, T., Ding, B., "Colorimetric strips for visual lead ion recognition utilizing polydiacetylene embedded nanofibers", 2 18304– 18312 https://doi. org/10.1039/c4ta04547e, 2014

      28 Anh, T. N., Reppy, M. A., Pindzola, B. A., "Antibody-functionalized polydiacetylene coatings on nanoporous membranes for microorganism detection", 906–908 https://doi. org/10.1039/b516403f, 2006

      29 Korf, J., van Amerongen, A., Posthuma-Trumpie, G. A., "Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey", 393, 569–582 https://doi. org/10.1007/s00216-008-2287-2, 2009

      30 Dodig, S., Somborac Bačura, A., Grošić, L., Džimbeg, M., Dorotić, M., "Current status of the lateral flow immunoassay for the detection of sarscov- 2 in nasopharyngeal swabs", 31 https://doi. org/10.11613/BM.2021.020601, 2021

      31 Jelinek, R., Shahal, T., Kolusheva, S., "Peptide-membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay", 39, 15851–15859 https://doi. org/10.1021/bi000570b, 2000

      32 Bohorquez, K., Wen, J. T., Tsutsui, H., "Polydiacetylene-coated polyvinylidene fluoride strip aptasensor for colorimetric detection of zinc(II)", 232, 313–317 https://doi. org/10.1016/j. snb.2016.03.118, 2016

      33 Hu, P. C., Malmstadt, N., Kim, W. Y., Kim, S. M., Jung, S., Jeon, T. J., Jang, H., "Automated formation of multicomponent-encapuslating vesosomes using continuous flow microcentrifugation", 8, 1341–1346 https://doi. org/10.1002/biot.201200388, 2013

      34 Chavalitshewinkoon-Petmitr, P., Rupprom, K., Kittigul, L., Diraphat, P., "Evaluation of real-time RT-PCR assays for detection and quantification of norovirus genogroups I and II", 32, 139–146 https://doi. org/10.1007/s12250-016-3863-9, 2017

      35 Cohen, Z., Rozner, S., Kolusheva, S., Jelinek, R., Eichler, J., Dowhan, W., "Detection and analysis of membrane interactions by a biomimetic colorimetric lipid/polydiacetylene assay", 319, 96–104 https://doi. org/10.1016/S0003-2697(03)00278-1, 2003

      36 Kokai-Kun, J. F., Wu, J. A., Mond, J. J., Kusuma, C., "Lysostaphin Disrupts Staphylococcus aureus and Staphylococcus epidermidis Biofilms on Artificial Surfaces", 47, 3407–3414 https://doi. org/10.1128/AAC.47.11.3407-3414.2003, 2003

      37 Ingel, B., Wen, J. T., Viravathana, P., Tsutsui, H., Roper, C., "Polydiacetylene-Coated Sensor Strip for Immunochromatic Detection of Xylella fastidiosa subsp. fastidiosa", 22, 406–412 https://doi. org/10.1177/2472630316689286, 2017

      38 Ha, S. H., So, J. S., Lim, M. C., Koo, Y. M., Kim, Y. R., Kim, S. M., Jeong, S., Jeon, T. J., Han, S. H., "Elucidation of molecular interactions between lipid membranes and ionic liquids using model cell membranes", 8, 5501–5506 (2012). https://doi. org/10.1039/c2sm25223f, 2012

      39 Mond, J., Walsh, S., Shah, A., "Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol", 47, 554–558 https://doi. org/10.1128/AAC.47.2.554-558.2003, 2003

      40 Jeon, T. J., Shim, J., Ryu, H., Park, J., Lim, M. C., Kim, Y. R., Kim, S. M., "Nanopore based detection of: Bacillus thuringiensis HD-73 spores using aptamers and versatile DNA hairpins", 10, 11955–11961 https://doi. org/10.1039/c8nr03168a, 2018

      41 Chen, L., Zhu, X., Zhang, D., Yang, L., Shen, P., Jia, J., "High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescencelinked immunosorbent assay", 59, 2184–2189 https://doi. org/10.1021/jf104140t, 2011

      42 Bi, L. J., Zhang, Z. P., Zhang, X. E., Yang, R. F., Wang, X. Y., Wang, D. B., Tian, B., Fleming, J., "Detection of Bacillus anthracis spores by superparamagnetic lateral-flow immunoassays based on Road Closure.", 67, 608–614 (2015). https://doi. org/10.1016/j. bios.2014.09.067, 2015

      43 Jung, Y. K., Soh, H. T., Park, H. G., Kim, T. W., "Specific colorimetric detection of proteins using bidentate aptamer-conjugated polydiacetylene (PDA) liposomes", 20, 3092–3097 https://doi. org/10.1002/adfm.201001008, 2010

      44 Heide, B. R., Holck, A., Heir, E., "Detection of eight GMO maize events by qualitative, multiplex PCR and fluorescence capillary gel electrophoresis", 227, 527–535 https://doi. org/10.1007/s00217-007-0751-4, 2008

      45 Ahn, D. J., Yoon, J., Park, H., Lee, C. H., Kim, J. M., Chae, S. K., "Polydiacetylene supramolecules in electrospun microfibers: Fabrication, micropatterning, and sensor applications", 19, 521– 524 https://doi. org/10.1002/adma.200602012, 2007

      46 Ahn, D. J., Lee, Y. B., Kim, J. M., Chae, S. K., "Patterned color and fluorescent images with polydiacetylene supramolecules embedded in poly (vinyl alcohol) films", 16, 2103–2109 https://doi. org/10.1002/adfm.200600039, 2006

      47 Filho, A. M. M., Soares, N. D. F. F., Oliveira, T. V. de, Oliveira, C. P. de, Fontes, E. A. F., "Behaviour of polydiacetylene vesicles under different conditions of temperature, pH and chemical components of milk", 135, 1052–1056 https://doi. org/10.1016/j. foodchem.2012.05.076, 2012

      48 Kang, C. D., Sim, S. J., Park, C. K., "Non-labeled detection of waterborne pathogen Cryptosporidium parvum using a polydiacetylene-based fluorescence chip", 3, 687–693 https://doi. org/10.1002/biot.200700246, 2008

      49 Cieśla, J. M., Tudek, B., Stobiecka, M., Radecka, H., Janowska, B., "Piezoelectric Sensor for Determination of Genetically Modified Soybean Roundup Ready in Samples not Amplified by PCR", 7, 1462–1479, 2007

      50 Ehrmann, M., Zawistowski, A., Yi, T., Wu, J., Schmuck, C., "Peptide functionalized polydiacetylene liposomes Act as a fluorescent turn-on sensor for bacterial lipopolysaccharide", 133, 9720–9723 https://doi. org/10.1021/ja204013u, 2011

      51 Amal, R., Munroe, P., Lim, M., Lai, L. M. H., Goon, I. Y., Gooding, J. J., "Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine", 21, 673–681 https://doi. org/10.1021/cm8025329, 2009

      52 Jeon, N. L., Yoo, P. J., Sim, S. J., Park, C. H., Lee, S. W., Kim, J. P., "A direct, multiplex biosensor platform for pathogen detection based on crosslinked polydiacetylene (PDA) supramolecules", 19, 3703–3710 https://doi. org/10.1002/adfm.200900393, 2009

      53 Dong, J. A., Kim, J. M., "Fluorogenic polydiacetylene supramolecules: Immobilization, micropatterning, and application to label-free chemosensors", 41, 805–816 https://doi. org/10.1021/ar7002489, 2008

      54 Ahn, K. H., Singha, S., Seo, H., "Ratiometric Fluorescence Detection of Anthrax Biomarker with EuIII-EDTA Functionalized Mixed Poly(diacetylene) Liposomes", 6, 1257–1263 https://doi. org/10.1002/ajoc.201700158, 2017

      55 Jin, S. M., Shin, Y. B., Lee, S. K., Kim, M. G., Kim, H. M., "Detection of biomolecular binding through enhancement of localized surface plasmon resonance (LSPR) by gold nanoparticles", 9, 2334–2344 https://doi. org/10.3390/s90402334, 2009

      56 Donovan, D. M., Yeroslavsky, G., Rahimipour, S., Girshevitz, O., Foster-Frey, J., "Antibacterial and antibiofilm surfaces through polydopamine-assisted immobilization of lysostaphin as an antibacterial enzyme", 31, 1064–1073 https://doi. org/10.1021/la503911m, 2015

      57 Arisi, A. C. M., Oliveira, E. M. M., Mello, C. S., Faria, J. C., Dinon, A. Z., Brod, F. C. A., "Primers and probes development for specific PCR detection of genetically modified common bean (Phaseolus vulgaris) Embrapa 5.1", pp. 4672– 4677 (2012), 2012

      58 Kim, J., Lee, J., "Multiphasic sensory alginate particle having polydiacetylene liposome for selective and more sensitive multitargeting detection", 24, 2817–2822 https://doi. org/10.1021/cm3015012, 2012

      59 Deng, J., Xia, Y., Jiang, L., "Simple and highly sensitive detection of hepatotoxin microcystin-LR via colorimetric variation based on polydiacetylene vesicles", 145, 713–719 https://doi. org/10.1016/j. snb.2010.01.029, 2010

      60 Hyun, J., Song, W., Lee, K. M., Kim, J. S., Kim, H. S., Kang, H. J., "Evaluation of the SD Bioline Norovirus rapid immunochromatography test using fecal specimens from Korean gastroenteritis patients", 186, 94–98 https://doi. org/10.1016/j. jviromet.2012.08.014, 2012

      61 Das, D., Schönherr, H., Owino, A. O., Müller, M., Kinyua, C. K., Kaur, K., Karuri, N. W., "Impact of Surface Area on Sensitivity in Autonomously Reporting Sensing Hydrogel Nanomaterials for the Detection of Bacterial Enzymes", 10 https://doi. org/10.3390/chemosensors10080299, 2022

      62 Chen, W. R., Zhu, D., Xing, D., Tang, Y., "PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method", 80, 3566–3571 https://doi. org/10.1021/ac0713306, 2008

      63 Charoenthai, N., Wacharasindhu, S., Traiphol, R., Sukwattanasinitt, M., Pattanatornchai, T., "Roles of head group architecture and side chain length on colorimetric response of polydiacetylene vesicles to temperature, ethanol and pH", 360, 565–573 https://doi. org/10.1016/j. jcis.2011.04.109, 2011

      64 Jung, Y. K., Park, H. G., Lee, N. Y., "On-chip colorimetric biosensor based on polydiacetylene (PDA) embedded in photopolymerized poly(ethylene glycol) diacrylate (PEG-DA) hydrogel In", pp. 103–108, 2006

      65 Coote, P. J., Lang, S., Gemmell, C. G., Desbois, A. P., "Surface disinfection properties of the combination of an antimicrobial peptide, ranalexin, with an endopeptidase, lysostaphin, against methicillin-resistant Staphylococcus aureus (MRSA)", 108, 723–730 (2010). https://doi. org/10.1111/j.1365-2672.2009.04472. x, 2010

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼