RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Does the iontophoretic application of bretylium tosylate modulate sweating during exercise in the heat in habitually trained and untrained men?

      한글로보기

      https://www.riss.kr/link?id=O112856412

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2020년

      • 작성언어

        -

      • Print ISSN

        0958-0670

      • Online ISSN

        1469-445X

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        1692-1699   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      What is the central question of this study? Does the administration of the adrenergic presynaptic release inhibitor bretylium tosylate modulate sweating during exercise in the heat, and does this response differ between habitually trained and untraine...

      What is the central question of this study?
      Does the administration of the adrenergic presynaptic release inhibitor bretylium tosylate modulate sweating during exercise in the heat, and does this response differ between habitually trained and untrained men?


      What is the main finding and its importance?
      Iontophoretic administration of bretylium tosylate attenuates sweating during exercise in the heat in habitually trained and untrained men. However, a greater reduction occurred in trained men. The findings demonstrate a role for cutaneous adrenergic nerves in the regulation of eccrine sweating during exercise in the heat and highlight a need to advance our understanding of neural control of human eccrine sweat gland activity.


      What is the central question of this study?
      Does the administration of the adrenergic presynaptic release inhibitor bretylium tosylate modulate sweating during exercise in the heat, and does this response differ between habitually trained and untrained men?
      What is the main finding and its importance?
      Iontophoretic administration of bretylium tosylate attenuates sweating during exercise in the heat in habitually trained and untrained men. However, a greater reduction occurred in trained men. The findings demonstrate a role for cutaneous adrenergic nerves in the regulation of eccrine sweating during exercise in the heat and highlight a need to advance our understanding of neural control of human eccrine sweat gland activity.
      We recently reported an influence of cutaneous adrenergic nerves on eccrine sweat production in habitually trained men performing an incremental exercise bout in non‐heat stress conditions. Based on an assumption that increasing heat stress induces cholinergic modulation of sweating, we evaluated the hypothesis that the contribution of cutaneous adrenergic nerves on sweating would be attenuated during exercise in the heat. Twenty young habitually trained and untrained men (n = 10/group) underwent three successive bouts of 15 min of light‐, moderate‐ and vigorous‐intensity cycling (equivalent to 30, 50, and 70% of peak oxygen uptake (V̇O2peak) respectively), each separated by a 15 min recovery while wearing a perfusion suit perfused with warm water (43°C). Sweat rate (ventilated capsule) was measured continuously at two bilateral forearm skin sites treated with 10 mm bretylium tosylate (an inhibitor of neurotransmitter release from adrenergic nerve terminals) and saline (control) via transdermal iontophoresis. A greater sweat rate was measured during vigorous exercise only in trained as compared to untrained men (P = 0.014). In both groups, sweating was reduced at the bretylium tosylate versus control sites, albeit the magnitude of reduction was greater in the trained men (P ≤ 0.024). These results suggest that cutaneous adrenergic nerves modulate sweating during exercise performed under a whole‐body heat stress, albeit a more robust response occurs in trained men. While it is accepted that a cholinergic mechanism plays a primary role in the regulation of sweating during an exercise‐heat stress, our findings highlight the need for additional studies aimed at understanding the neural control of human eccrine sweating.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼