RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Identification of invisible ischemic stroke in noncontrast CT based on novel two‐stage convolutional neural network model

      한글로보기

      https://www.riss.kr/link?id=O111880480

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        0094-2405

      • Online ISSN

        2473-4209

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        1262-1275   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Early identification of ischemic stroke lesion regions plays a vital role in its treatments like thrombolytic therapy and patients’ recovery. Noncontrast computed tomography (ncCT) is the most widespread imaging modality in emergency departments. Un...

      Early identification of ischemic stroke lesion regions plays a vital role in its treatments like thrombolytic therapy and patients’ recovery. Noncontrast computed tomography (ncCT) is the most widespread imaging modality in emergency departments. Unfortunately, it is extremely hard to distinguish the lesion from healthy tissue during the hyper‐acute phase of stroke. In this paper, a two‐stage convolutional neural network‐based method was proposed to identify the invisible ischemic stroke from ncCT.
      In order to combine the global and local information of images effectively, a cascaded structure with two coordinated networks was used to detect the suspicious stroke regions on the whole and optimize the detailed localization. In the first stage, an end‐to‐end U‐net with adaptive threshold was proposed to integrate global position, symmetry and gray texture information to detect the suspicious regions. After reducing the interference from most normal regions, a ResNet‐based patch classification network was used to eliminate some false positive samples on suspicious regions by mining deeper image features, contributing to a more precise localization of stroke. Finally, a MAP model was used to optimize the result by combining the classification results of each patch with their spatial constraint information.
      Three independent experiments, that is, training and testing on dataset from one hospital, on the combination of two, and on the two respectively, were performed on a total of 277 cases from two hospitals to validate the proposed model, The proposed method achieved identification accuracy of 91.89%, 87.21%, and 85.71% in the three experiments, and the final localization accuracy in terms of precise localization of stroke were 82.35%, 83.02%, and 81.40%, respectively, which indicated the robustness and clinical values of the method.
      There are some deep image feature differences between stroke region and normal region on ncCT images. The proposed two‐stage convolutional neural network model can well seize these features and use them to effectively identify and locate stroke.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼