본 연구에서는 갈대군락의 영양염 물질수지 모델 구축을 위한 기초연구로서, 갈대군락 Mesocosm 실험을 통해 수층-갈대(뿌리, 잎, 줄기)-토양의 영양염(DIN, DIP) 농도의 춘계 및 하계 모니터링 결...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A105582657
2018
Korean
메조코즘 실험 ; 갈대군락 ; 영양염 ; 물질수지 ; 지상경 ; 지하경 ; Mesocosm experiment ; Phragmites australis community ; Nutrient ; Mass balance ; Aerial stem ; Rhizome
KCI등재
학술저널
545-552(8쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
본 연구에서는 갈대군락의 영양염 물질수지 모델 구축을 위한 기초연구로서, 갈대군락 Mesocosm 실험을 통해 수층-갈대(뿌리, 잎, 줄기)-토양의 영양염(DIN, DIP) 농도의 춘계 및 하계 모니터링 결...
본 연구에서는 갈대군락의 영양염 물질수지 모델 구축을 위한 기초연구로서, 갈대군락 Mesocosm 실험을 통해 수층-갈대(뿌리, 잎, 줄기)-토양의 영양염(DIN, DIP) 농도의 춘계 및 하계 모니터링 결과를 이용하여 물질수지를 산정하였으며, 결과는 다음과 같다. 1) 갈대의 생체량은 춘계에는 지하경이 지상경에 비해 약 6.3~9.7% 높으며, 하계에는 지상경이 지하경에 비해 약 19.2~21.2% 높게 나타났으며, 갈대의 성장속도는 Mesocosm Tank A가 Mesocosm Tank D에 비해 지상경과 지하경 모두 2~3배 정도 빠르게 나타났다. 2) Mesocosm Tank에서의 갈대의 영양염(DIN, DIP) 농도는 춘계와 하계 모두 각각 2~3%로 차이가 적었다. 3) Mesocosm Tank별 생체량의 차이는 최대 23%로 나타나지만, 갈대가 흡수하는 영양염의 농도는 최대 3% 정도로 차이가 적었다.
다국어 초록 (Multilingual Abstract)
In this study, we performed a mesocosm experiment to estimate the mass balance of Nutrients (DIN, DIP) in a phragmites australis community. We developed 4 mesocosm tanks which is available to circulate seawater with adjustable tide levels and flooding...
In this study, we performed a mesocosm experiment to estimate the mass balance of Nutrients (DIN, DIP) in a phragmites australis community. We developed 4 mesocosm tanks which is available to circulate seawater with adjustable tide levels and flooding times. Each of the mesocosm tanks were filled with phragmites australis and sediment from Jinudo in Nakdong Estuary. We investigated DIN, DIP concentrations in three layers (seawater-phragmites australis-sediment) to estimate the mass balance of Nutrients and biomass. Growth rates were also investigated. The results can be summarized as follows. 1) In spring, rhizome biomass was higher than that of aerial stem by about 6.3~9.7%. In summer, aerial stem biomass was higher than that of rhizome about 19.2~21.2 %. 2) Th Growth rate of phragmites in Mesocosm Tank A was faster than in Mesocosm Tank D by about 2 to 3 times for aerial stem and rhizome. 3) The Concentration of nutrients (DIN, DIP) in each mesocosm Tank showed 2~3 % variance in spring and summer. 4) The biomass in each mesocosm varied by about 23 % which was higher than the concentration variance for each mesocosm tanks.
목차 (Table of Contents)
참고문헌 (Reference)
1 민병미, "조간대 저토 환경과 갈대의 생장 특성" 한국환경복원기술학회 14 (14): 57-69, 2011
2 신범식, "생태계 모델을 이용한 갯벌의 수질정화능력 산정" 한국해양공학회 21 (21): 42-49, 2007
3 Moller, I., "Wave attenuation over coastal salt marshes under storm surge conditions" 7 : 727-731, 2014
4 Ministry of Environment, "WETLAND CONSERVATION ACT"
5 Lansard, B., "Variability in benthic oxygen fluxes during the winter-spring transition in coastal sediments: an estimation by in situ micro-electrodes and laborotory mini-electrodes" 26 (26): 269-279, 2003
6 Duarte, C. M., "The role of coastal plant communities for climate change mitigation and adaptation" 3 : 961-968, 2013
7 Gedan, K. B., "The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm" 106 : 7-29, 2011
8 White, S. D., "The influence of water level fluctuations on the potential for convective flow in the emergent macrophytes Typha domingensis and Phragmites australis" 86 (86): 369-376, 2007
9 Hellings, S. E., "The effects of salinity and flooding on Phragmites australis" 29 (29): 41-49, 1992
10 Lee, C. Y., "Studies on the indoles in the common reed -II. Changes of indole compounds during the growth of sprouts-" 19 (19): 65-69, 1976
1 민병미, "조간대 저토 환경과 갈대의 생장 특성" 한국환경복원기술학회 14 (14): 57-69, 2011
2 신범식, "생태계 모델을 이용한 갯벌의 수질정화능력 산정" 한국해양공학회 21 (21): 42-49, 2007
3 Moller, I., "Wave attenuation over coastal salt marshes under storm surge conditions" 7 : 727-731, 2014
4 Ministry of Environment, "WETLAND CONSERVATION ACT"
5 Lansard, B., "Variability in benthic oxygen fluxes during the winter-spring transition in coastal sediments: an estimation by in situ micro-electrodes and laborotory mini-electrodes" 26 (26): 269-279, 2003
6 Duarte, C. M., "The role of coastal plant communities for climate change mitigation and adaptation" 3 : 961-968, 2013
7 Gedan, K. B., "The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm" 106 : 7-29, 2011
8 White, S. D., "The influence of water level fluctuations on the potential for convective flow in the emergent macrophytes Typha domingensis and Phragmites australis" 86 (86): 369-376, 2007
9 Hellings, S. E., "The effects of salinity and flooding on Phragmites australis" 29 (29): 41-49, 1992
10 Lee, C. Y., "Studies on the indoles in the common reed -II. Changes of indole compounds during the growth of sprouts-" 19 (19): 65-69, 1976
11 Ruth, B. F., "Recolonization of estuarine sediments by macroinvertbrates: Does microcosm size matter?" 17 (17): 606-613, 1994
12 Min, B. M., "Plant distribution in relation to soil properties of reclaimed lands on the west cost of Korea" 42 (42): 279-286, 1999
13 Vretare, V., "Phenotypic plasticity in Phragmites australis as a functional response to water depth" 69 (69): 127-145, 2001
14 Barbanti, A., "Nutrient regeneration processes in bottom sediments in a Po delta lagoon (Italy) and the role of bioturbation in determining the fluxes at the sediment-water interface" 228 (228): 1-21, 1992
15 Philson, M. E. Q., "Marine microcosms in Ecological Research. 1980. Reprinted from microcosms in ecological research"
16 Schmieder, K., "Effects of water level variations on the dynamics of the reed belts of Lake Constance" 4 : 469-480, 2004
17 Findlay, S., "Effects of phragmites australis removal on marsh nutrient cycling" 11 (11): 157-165, 2003
18 U.S. Environmental Protection Agency, "Design manual: constructed wetlands and aquatic plant systems for municipal wastewater treatment" 1-83, 1988
19 Windham, L., "Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA" 21 (21): 179-188, 2001
20 Rupprecht, F., "Biophysical properties of salt marsh canopies-Quantifying plant stem flexibility and above ground biomass" 100 : 48-57, 2015
21 Lee, H. J., "Adaptation of Phragmites communis Trin. population to soil salt contents of habitats" 16 (16): 63-74, 1993
22 Park, T. Y., "A study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands" 2 (2): 64-73, 1999
23 Ryu, T. Y., "A study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands" 2 (2): 64-73, 2016
24 Ryu, T. Y., "A study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands" 2 (2): 64-73, 2014
25 Meyerson, L. A., "A comparison of Phragmites australis in freshwater and brackish marsh environments in North America" 8 (8): 89-103, 2000
인공어초 안정성 해석 프로그램 개발 - 컴퓨터 코딩시스템 적용
베이지안 접근법을 활용한 제2쇄빙연구선 건조사업의 경제적 편익 산정연구
2012년과 2014년 봄철 동해 남서부 해역 유색용존유기물의 분포 및 특성 비교
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2026 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2020-01-01 | 평가 | 등재학술지 유지 (재인증) | |
2017-01-01 | 평가 | 등재학술지 유지 (계속평가) | |
2013-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2010-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
2009-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | |
2008-01-01 | 평가 | 신청제한 (등재후보1차) | |
2007-01-01 | 평가 | 등재후보 1차 FAIL (등재후보1차) | |
2005-01-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.42 | 0.42 | 0.43 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.45 | 0.43 | 0.592 | 0.13 |