RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      무인기 기반 RGB 영상을 이용한 동계작물 바이오매스 평가 모델 개발 = Development of Biomass Evaluation Model of Winter Crop Using RGB Imagery Based on Unmanned Aerial Vehicle

      한글로보기

      https://www.riss.kr/link?id=A105678149

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to optimize the evaluation of biomass in crop monitoring, accurate and timely data of the crop-field are required. Evaluating above-ground biomass helps to monitor crop vitality and to predict yield. Unmanned Aerial Vehicle (UAV) imagery are ...

      In order to optimize the evaluation of biomass in crop monitoring, accurate and timely data of the crop-field are required. Evaluating above-ground biomass helps to monitor crop vitality and to predict yield. Unmanned Aerial Vehicle (UAV) imagery are being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study reports on the development of remote sensing techniques for evaluating the biomass of winter crop. Specific objective was to develop statistical models for estimating the dry weight of barley and wheat using a Excess Green index (E × G) based Vegetation Fraction (VF) and a Crop Surface Model (CSM) based Plant Height (PH) value. As a result, the multiple linear regression equations consisting of three independent variables (VF, PH, and VF × PH) and aboveground dry weight provided good fits with coefficients of determination (R<sup>2</sup>) ranging from 0.86 to 0.99 with 5 cultivars. In the case of the barley, the coefficient of determination was 0.91 and the root mean squared error of measurement was 102.09 g/㎡. And for the wheat, the coefficient of determination was 0.90 and the root mean squared error of measurement was 110.87 g/㎡. Therefore, it will be possible to evaluate the biomass of winter crop through the UAV image for the crop growth monitoring.

      더보기

      참고문헌 (Reference)

      1 이경도, "원격탐사와 모델을 이용한 작황 모니터링" 대한원격탐사학회 33 (33): 617-620, 2017

      2 나상일, "원격탐사 기반 맥류 작황 추정을 위한 최적 식생지수 선정 - UAV와 현장 측정자료를 활용하여 -" 대한원격탐사학회 32 (32): 483-497, 2016

      3 Torres-Sanchez, J., "Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV" 103 : 104-113, 2014

      4 나상일, "Monitoring Onion Growth using UAV NDVI and Meteorological Factors" 한국토양비료학회 50 (50): 306-317, 2017

      5 Kim, D.W., "Modeling and testing of growth status for chinese cabbage and white radish with UAV-based RGB imagery" 10 (10): 563-588, 2018

      6 나상일, "Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors" 한국토양비료학회 49 (49): 420-428, 2016

      7 이경도, "Estimating the Amount of Nitrogen in Hairy Vetch on Paddy Fields using Unmaned Aerial Vehicle Imagery" 한국토양비료학회 48 (48): 384-390, 2015

      8 Bendig, J., "Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging" 6 (6): 10395-10412, 2014

      9 나상일, "Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors" 한국토양비료학회 50 (50): 422-433, 2017

      10 Garcia-Ruiz, F., "Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees" 91 : 106-115, 2013

      1 이경도, "원격탐사와 모델을 이용한 작황 모니터링" 대한원격탐사학회 33 (33): 617-620, 2017

      2 나상일, "원격탐사 기반 맥류 작황 추정을 위한 최적 식생지수 선정 - UAV와 현장 측정자료를 활용하여 -" 대한원격탐사학회 32 (32): 483-497, 2016

      3 Torres-Sanchez, J., "Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV" 103 : 104-113, 2014

      4 나상일, "Monitoring Onion Growth using UAV NDVI and Meteorological Factors" 한국토양비료학회 50 (50): 306-317, 2017

      5 Kim, D.W., "Modeling and testing of growth status for chinese cabbage and white radish with UAV-based RGB imagery" 10 (10): 563-588, 2018

      6 나상일, "Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors" 한국토양비료학회 49 (49): 420-428, 2016

      7 이경도, "Estimating the Amount of Nitrogen in Hairy Vetch on Paddy Fields using Unmaned Aerial Vehicle Imagery" 한국토양비료학회 48 (48): 384-390, 2015

      8 Bendig, J., "Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging" 6 (6): 10395-10412, 2014

      9 나상일, "Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors" 한국토양비료학회 50 (50): 422-433, 2017

      10 Garcia-Ruiz, F., "Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees" 91 : 106-115, 2013

      11 Bendig, J., "Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley" 39 : 79-87, 2015

      12 Geipel, J., "Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system" 6 (6): 10335-10355, 2014

      13 Woebbecke, D.M., "Color indices for weed identification under various soil, residue, and lighting conditions" 38 (38): 259-269, 1995

      14 Swain, K.C., "Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop" 53 (53): 21-27, 2010

      15 Hunt, E.R., "Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring" 2 (2): 290-305, 2010

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-07-24 학술지등록 한글명 : 대한원격탐사학회지
      외국어명 : Korean Journal of Remote Sensing
      KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.52 0.52 0.54
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.53 0.44 0.725 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼