RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Wireless Power Transfer-Based Microrobot with Magnetic Force Propulsion Considering Power Transfer Efficiency

      한글로보기

      https://www.riss.kr/link?id=A108229709

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A microrobot that could continuously receive both electrical energy and propulsion force from a wireless power transfer system would offer tremendous benefits. However, wireless powering systems produce a time-varying magnetic field that can be harmfu...

      A microrobot that could continuously receive both electrical energy and propulsion force from a wireless power transfer system would offer tremendous benefits. However, wireless powering systems produce a time-varying magnetic field that can be harmful if the generated magnetic field needed for microrobot movement is large. To limit exposure, power transfer efficiency must be enhanced. This paper derived and analyzed the magnetic force applied to a microrobot from a wireless power transfer system. Unlike previously introduced Lorentz force-based microrobot propulsion, the proposed method is independent of a wireless power transfer system’s frequency. Therefore, this frequency can be determined considering maximum power transfer efficiency. The theoretical analysis and simulation by numerical analysis were compared, and results were verified though actual fabrication and measurement. Analyses of the transmitting and receiving coils were conducted. The optimum force, with less than 9% discrepancy, was determined while achieving a 3.6% improvement in power transfer efficiency.

      더보기

      참고문헌 (Reference)

      1 R. Carta, "Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection" 25 (25): 845-851, 2009

      2 D. Sinha, "Wireless actuation of piezoelectric coupled micromembrane using radio frequency magnetic field for biomedical applications" 121 (121): 134501-, 2017

      3 Z. W. Jia, "Three-phase receiving coil of wireless power transmission system for gastrointestinal robot" 31 (31): 1750277-, 2017

      4 T. Yamanaka, "Self-propelled swimming microrobot using electroosmotic propulsion and biofuel cell" 3 (3): 1787-1792, 2018

      5 W. Alan Davis, "Radio Frequency Circuit Design" John Wiley & Sons 2001

      6 김동욱 ; 안장용 ; 안승영, "Propulsion of a Magnetic Material-Applied Microrobot in a Tube Based on a Wireless Power Transfer System" 한국전자파학회 22 (22): 171-177, 2022

      7 D. Kim, "Propulsion and rotation of microrobot based on a force on a magnetic material in a time-varying magnetic field using a wireless power transfer system" 56 (56): 6700105-, 2020

      8 A. Hajiaghajani, "Patterned magnetic fields for remote steering and wireless powering to a swimming microrobot" 25 (25): 207-216, 2020

      9 B. J. Nelson, "Microrobots for minimally invasive medicine" 12 : 55-85, 2010

      10 J. Li, "Micro/nanorobots for biomedicine : delivery, surgery, sensing, and detoxification" 2 (2): eaam6431-, 2017

      1 R. Carta, "Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection" 25 (25): 845-851, 2009

      2 D. Sinha, "Wireless actuation of piezoelectric coupled micromembrane using radio frequency magnetic field for biomedical applications" 121 (121): 134501-, 2017

      3 Z. W. Jia, "Three-phase receiving coil of wireless power transmission system for gastrointestinal robot" 31 (31): 1750277-, 2017

      4 T. Yamanaka, "Self-propelled swimming microrobot using electroosmotic propulsion and biofuel cell" 3 (3): 1787-1792, 2018

      5 W. Alan Davis, "Radio Frequency Circuit Design" John Wiley & Sons 2001

      6 김동욱 ; 안장용 ; 안승영, "Propulsion of a Magnetic Material-Applied Microrobot in a Tube Based on a Wireless Power Transfer System" 한국전자파학회 22 (22): 171-177, 2022

      7 D. Kim, "Propulsion and rotation of microrobot based on a force on a magnetic material in a time-varying magnetic field using a wireless power transfer system" 56 (56): 6700105-, 2020

      8 A. Hajiaghajani, "Patterned magnetic fields for remote steering and wireless powering to a swimming microrobot" 25 (25): 207-216, 2020

      9 B. J. Nelson, "Microrobots for minimally invasive medicine" 12 : 55-85, 2010

      10 J. Li, "Micro/nanorobots for biomedicine : delivery, surgery, sensing, and detoxification" 2 (2): eaam6431-, 2017

      11 D. Kim, "Magnetic resonant wireless power transfer for propulsion of implantable micro-robot" 117 (117): 17-712, 2015

      12 A. M. Maier, "Magnetic propulsion of microswimmers with DNA-based flagellar bundles" 16 (16): 906-910, 2016

      13 Kasra Rouhi ; Amirhossein Hajiaghajani ; Ali Abdolali, "Magnetic Particle Separation by an Optimized Coil: A Graphical User Interface" 한국자기학회 22 (22): 214-219, 2017

      14 I. Umay, "Localization and tracking of implantable biomedical sensors" 17 (17): 583-, 2017

      15 D. Kim, "Instantaneous magnetic force evaluation on a magnetic material for wireless power transfer based microrobot propulsion" 38-40, 2020

      16 D. Kim, "High-efficiency wireless power and force transfer for a micro-robot using a multiaxis AC/DC magnetic coil" 53 (53): 9401804-, 2017

      17 D. Kim, "Generation of magnetic propulsion force and torque for microrobot using wireless power transfer coil" 51 (51): 8600104-, 2015

      18 R. Narayanamoorthi, "Frequency splitting-based wireless power transfer and simultaneous propulsion generation to multiple microrobots" 18 (18): 5566-5575, 2018

      19 TDK, "Ferrite Ni-Zn material characteristics"

      20 T. B. Jones, "Electromechanics of Particles" Cambridge University Press 2005

      21 K. Villa, "Cooperative multifunctional self‐propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery" 28 (28): 1804343-, 2018

      22 Q. Fu, "Characteristic evaluation of a shrouded propeller mechanism for a magnetic actuated microrobot" 6 (6): 1272-1288, 2015

      23 Q. Fu, "Characteristic evaluation of a shrouded propeller mechanism for a magnetic actuated microrobot" 6 (6): 1272-1288, 2015

      24 L. Lin, "Capsule endoscopy : a mechatronics perspective" 6 (6): 33-39, 2011

      25 E. Kurgan, "Calculation of the magnetic force acting on a particle in the magnetic field" 2013

      26 G. B. Jang, "A spiral microrobot performing navigating linear and drilling motions by magnetic gradient and rotating uniform magnetic field for applications in unclogging blocked human blood vessels" 51 (51): 9100404-, 2015

      27 3M, "3M™ flux field directional materials AB5010RF and AB5010RF-B, Technical report"

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2012-06-22 학술지명변경 한글명 : Journal of The Korean Institute of Electromagnetic Engineering and Science -> Journal of Electromagnetic Engineering and Science
      외국어명 : Journal of The Korean Institute of Electromagnetic Engineering and Science -> Journal of Electromagnetic Engineering and Science
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-04-08 학술지명변경 한글명 : Journal of The Korea Electromagnetic Engineering Society -> Journal of The Korean Institute of Electromagnetic Engineering and Science
      외국어명 : Journal of The Korea Electromagnetic Engineering Society -> Journal of The Korean Institute of Electromagnetic Engineering and Science
      KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-09-28 학술지명변경 한글명 : 영문논문지(JKEES) -> Journal of The Korea Electromagnetic Engineering Society KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.28 0.28 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.21 0.656 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼