RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Optical Character Recognition Performance Comparison of CNNs and Tesseract = Convolutional Neural Networks 와 Tesseract 방법의 문자인식 성능 비교

      한글로보기

      https://www.riss.kr/link?id=T14177015

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Optical Character Recognition (OCR) automatically recognizes texts in an image. OCR is still a challenging problem in computer vision. A successful solution to OCR has important scanner applications such as Text-To-Speech (TTS) conversion and automati...

      Optical Character Recognition (OCR) automatically recognizes texts in an image. OCR is still a challenging problem in computer vision. A successful solution to OCR has important scanner applications such as Text-To-Speech (TTS) conversion and automatic document classification.
      In this work, we evaluate the current state-of-the-art OCR methods. One is based on convolutional neural networks (CNNs) and the other is Tesseract that is developed by HP. For this, we have designed a CNNs architecture for OCR and built our own dataset that contains upper and lower case characters. We have experimented in the presence of Salt and Pepper noise or Gaussian noise and reported their performance comparison in terms of recognition accuracy and processing time. Experimental results indicate that CNNs based OCR outperforms Tesseract in recognition accuracy but takes much more computational resources than Tesseract. In case that processing time has priority, we recommend Tesseract due to its processing speed.
      In addition, CNNs is showed 97.49 % recognition accuracy using four-fold cross-validation.

      더보기

      목차 (Table of Contents)

      • Abstract 4
      • 1. Introduction 6
      • 2. OCR (Optical Character Recognition) Methods 9
      • 2.1. Overview of OCR 9
      • 2.2. CNNs 10
      • Abstract 4
      • 1. Introduction 6
      • 2. OCR (Optical Character Recognition) Methods 9
      • 2.1. Overview of OCR 9
      • 2.2. CNNs 10
      • 2.3. Tesseract 21
      • 2.4. OCR Database 23
      • 3. Method and Performance Comparison 26
      • 3.1. CNNs 26
      • 3.2. Tesseract 33
      • 4. Conclusion 37
      • Reference 39
      • Korean Abstract 42
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼