Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived by McLeish and Larson on the basis of the ...
Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived by McLeish and Larson on the basis of the reptation dynamics with simplified branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for the simplified differential version of these constitutive equations. It is proved that they are globally Hadamard stable except for the case of maximum constant backbone stretch (λ = q) with arm withdrawal s$\_$c/ neglected, as long as the orientation tensor remains positive definite or the smooth strain history in the now is previously given. However this model is dissipative unstable, since the steady shear How curves exhibit non-monotonic dependence on shear rate. This type of instability corresponds to the nonlinear instability in simple shear flow under finite amplitude disturbances. Additionally in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady now curves, the constitutive equations will possibly violate the positive definiteness of the orientation tensor and thus become Hadamard unstable.