RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Interlayer vacancy effects on the phonon modes in AB stacked bilayer graphene nanoribbon

      한글로보기

      https://www.riss.kr/link?id=A106838590

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      We explore the effects of interlayer vacancy defects on the vibrational properties of Bernal (AB) stacking bilayer armchair graphene nanoribbons (BiAGNRs) using the forced vibrational method. It is observed that the Raman active longitudinal optical (...

      We explore the effects of interlayer vacancy defects on the vibrational properties of Bernal (AB) stacking bilayer armchair graphene nanoribbons (BiAGNRs) using the forced vibrational method. It is observed that the Raman active longitudinal optical (LO) phonon of BiAGNR is shifted downward with the decrease of the ribbon width and an increase of the vacancy concentrations. We find that vacancies induce some new peaks in the low frequency regime of the phonon density of states. Our calculated typical mode patterns elucidate that the localized transverse optical phonon at the K-point is shifted towards the defect sites from the edges with increased vacancy concentrations. In addition, the impact of defect induced phonon modes on the specific heat capacity and thermal conductivity of BiAGNRs are discussed. These results present a new way of understanding the heat dissipation phenomena of graphene-based high-performance nanodevices and to clarify the Raman and the experiments related to the phonon properties.

      더보기

      참고문헌 (Reference)

      1 R. H. Telling, "Wigner defects bridge the graphite gap" 2 (2): 333-, 2003

      2 R. Gillen, "Vibrational properties of graphene nanoribbons by first-principles calculations" 80 (80): 155418-, 2009

      3 J.H. Page, "Ultrasonic investigation of phonon localization in a disordered three-dimensional “mesoglass”" IOP Publishing 92 : 2007012129-, 2007

      4 A. D. Liao, "Thermally limited current carrying ability of graphene nanoribbons" 106 (106): 256801-, 2011

      5 K. M. Shahil, "Thermal properties of graphene and multilayer graphene:applications in thermal interface materials" 152 (152): 1331-1340, 2012

      6 H. Yang, "Thermal conductivity of graphene nanoribbons with defects and nitrogen doping" 79 : 29-35, 2014

      7 Z. Guo, "Thermal conductivity of graphene nanoribbons" 95 (95): 163103-, 2009

      8 M. Mu, "Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins" 4 (4): 042001-, 2017

      9 M. Vandescuren, "Theoretical study of the vibrational edge modes in graphene nanoribbons" 78 (78): 195401-, 2008

      10 E. Mariani, "Temperature-dependent resistivity of suspended graphene" 82 (82): 195403-, 2010

      1 R. H. Telling, "Wigner defects bridge the graphite gap" 2 (2): 333-, 2003

      2 R. Gillen, "Vibrational properties of graphene nanoribbons by first-principles calculations" 80 (80): 155418-, 2009

      3 J.H. Page, "Ultrasonic investigation of phonon localization in a disordered three-dimensional “mesoglass”" IOP Publishing 92 : 2007012129-, 2007

      4 A. D. Liao, "Thermally limited current carrying ability of graphene nanoribbons" 106 (106): 256801-, 2011

      5 K. M. Shahil, "Thermal properties of graphene and multilayer graphene:applications in thermal interface materials" 152 (152): 1331-1340, 2012

      6 H. Yang, "Thermal conductivity of graphene nanoribbons with defects and nitrogen doping" 79 : 29-35, 2014

      7 Z. Guo, "Thermal conductivity of graphene nanoribbons" 95 (95): 163103-, 2009

      8 M. Mu, "Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins" 4 (4): 042001-, 2017

      9 M. Vandescuren, "Theoretical study of the vibrational edge modes in graphene nanoribbons" 78 (78): 195401-, 2008

      10 E. Mariani, "Temperature-dependent resistivity of suspended graphene" 82 (82): 195403-, 2010

      11 Z. Yang, "Synergistic effects of grain boundaries and edges on fatigue deformations of sub-5 nm graphene nanoribbons" 52 (52): 10871-10878, 2017

      12 D. A. Abanin, "Spin-filtered edge states and quantum Hall effect in graphene" 96 (96): 176803-, 2006

      13 S. Zhang, "Specific heat of single-walled carbon nanotubes" 68 (68): 075415-, 2003

      14 M. Xia, "Specific heat of graphene nanoribbons" 375 (375): 3726-3730, 2011

      15 V. K. Tewary, "Singular behavior of the Debye-Waller factor of graphene" 79 (79): 125416-, 2009

      16 A. S. Nissimagoudar, "Significant reduction of lattice thermal conductivity due to phonon confinement in graphene nanoribbons" 89 (89): 235422-, 2014

      17 H. Ochoa, "Scattering by flexural phonons in suspended graphene under back gate induced strain" 44 (44): 963-966, 2012

      18 A. C. Ferrari, "Raman spectroscopy as a versatile tool for studying the properties of graphene" 8 (8): 235-, 2013

      19 M. S. Islam, "Polarized microscopic laser Raman scattering spectroscopy for edge structure of epitaxial graphene and localized vibrational mode" 77 : 1073-1081, 2014

      20 M. S. Islam, "Polarized micro Raman scattering spectroscopy for curved edges of epitaxial graphene" 105 (105): 243103-, 2014

      21 D. L. Nika, "Phonons and thermal transport in graphene and graphenebased materials" 80 (80): 036502-, 2017

      22 N. Nishiguchi, "Phonon-transmission rate, fluctuations, and localization in random semiconductor superlattices: green’s-function approach" 48 (48): 2515-, 1993

      23 I. Savić, "Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable?" 101 (101): 165502-, 2008

      24 D. L. Nika, "Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering" 79 (79): 155413-, 2009

      25 R. A. Jishi, "Phonon modes in carbon nanotubules" 209 (209): 77-82, 1993

      26 G. C. Loh, "Phonon localization around vacancies in graphene nanoribbons" 23 : 88-92, 2012

      27 Y. Yamakita, "Phonon dispersion and vibronic coupling in carbon nanoribbons" IOP Publishing 185 (185): 012055-, 2009

      28 M. Ezawa, "Peculiar width dependence of the electronic properties of carbon nanoribbons" 73 (73): 045432-, 2006

      29 H. Karamitaheri, "On the channel width-dependence of the thermal conductivity in ultra-narrow graphene nanoribbons" 109 (109): 063102-, 2016

      30 M. L. Williams, "Numerical study of phonon localization in disordered systems" 31 (31): 4508-, 1985

      31 A. A. Shokri, "Numerical study of localization length in disordered graphene nanoribbons" 51 (51): 785-791, 2012

      32 M. S. Islam, "Numerical analysis on vacancy induced vibrational properties of graphene nanoribbons" 79 : 356-361, 2013

      33 W. Gao, "New insights into the structure and reduction of graphite oxide" 1 (1): 403-, 2009

      34 Velram Balaji Mohan, "Mechanical properties of thin films of graphene materials: A study on their structural quality and functionalities" 한국물리학회 18 (18): 879-885, 2018

      35 H. Lee, "Magnetic ordering at the edges of graphitic fragments: magnetic tail interactions between the edge-localized states" 72 (72): 174431-, 2005

      36 R. Al-Jishi, "Lattice-dynamical model for graphite" 26 (26): 4514-, 1982

      37 P. Kumar, "Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness" 94 : 494-500, 2015

      38 K. I. Sasaki, "Kohn anomalies in graphene nanoribbons" 80 (80): 155450-, 2009

      39 E. H. Åhlgren, "Ion irradiation tolerance of graphene as studied by atomistic simulations" 100 (100): 233108-, 2012

      40 Y. Liu, "Investigation on thermal conductivity of bilayer graphene nanoribbons" 4 (4): 54474-54479, 2014

      41 P. Sheng, "Introduction to Wave Scattering" Springer Science & Business Media 88 : 2006

      42 A. C. Ferrari, "Interpretation of Raman spectra of disordered and amorphous carbon" 61 (61): 14095-, 2000

      43 Z. Yao, "High-field electrical transport in single-wall carbon nanotubes" 84 (84): 2941-, 2000

      44 Y. W. Son, "Half-metallic graphene nanoribbons" 444 (444): 347-, 2006

      45 H. C. Schniepp, "Functionalized single graphene sheets derived from splitting graphite oxide" 110 (110): 8535-8539, 2006

      46 C. Jeong, "Full dispersion versus Debye model evaluation of lattice thermal conductivity with a Landauer approach" 109 (109): 073718-, 2011

      47 D. Finkenstadt, "From graphene to graphite: a general tight-binding approach for nanoribbon carrier transport" 76 (76): 121405-, 2007

      48 Z. W. Tan, "First-principles study of heat transport properties of graphene nanoribbons" 11 (11): 214-219, 2010

      49 S. D. Sarma, "Electronic transport in two-dimensional graphene" 83 (83): 407-, 2011

      50 L. Brey, "Electronic states of graphene nanoribbons studied with the Dirac equation" 73 (73): 235411-, 2006

      51 E. V. Castro, "Electronic properties of a biased graphene bilayer" 22 (22): 175503-, 2010

      52 S. K. Gupta, "Electronic and phonon bandstructures of pristine few layer and metal doped graphene using first principles calculations" 3 (3): 032117-, 2013

      53 S. H. Lv, "Effects of the edge states on conductance and thermopower for the bilayer graphene nanoribbons" 112 (112): 053701-, 2012

      54 M. S. Islam, "Effect of vacancy defects on phonon properties of hydrogen passivated graphene nanoribbons" 80 : 146-154, 2014

      55 Akshaykumar Salimath, "Effect of electric field and magnetic field on spin transport in bilayer graphene armchair nanoribbons: A Monte Carlo simulation study" 한국물리학회 14 (14): 1526-1530, 2014

      56 M. Li, "Effect of defects on thermal conductivity of graphene/epoxy nanocomposites" 130 : 295-303, 2018

      57 F. Mazzamuto, "Edge shape effect on vibrational modes in graphene nanoribbons: a numerical study" 109 (109): 064516-, 2011

      58 Y. Wang, "Edge effect on thermal transport in graphene nanoribbons:a phonon localization mechanism beyond edge roughness scattering" 101 (101): 013101-, 2012

      59 H. Xu, "Edge disorder and localization regimes in bilayer graphene nanoribbons" 80 (80): 045308-, 2009

      60 A. Hashimoto, "Direct evidence for atomic defects in graphene layers" 430 (430): 870-, 2004

      61 M. S. Islam, "Deconvolution of Raman spectra of disordered monolayer graphene: an approach to probe the phonon modes" 42 (42): 147-, 2019

      62 T. Tohei, "Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations" 73 (73): 064304-, 2006

      63 T. Ohta, "Controlling the electronic structure of bilayer graphene" 313 (313): 951-954, 2006

      64 J. J. Yeo, "Comparing the effects of dispersed Stone–Thrower–Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons" 23 (23): 385702-, 2012

      65 M. H. Bae, "Ballistic to diffusive crossover of heat flow in graphene ribbons" 4 : 1734-, 2013

      66 E. Munoz, "Ballistic thermal conductance of graphene ribbons" 10 (10): 1652-1656, 2010

      67 H. Karamitaheri, "Anomalous diameter dependence of thermal transport in ultra-narrow Si nanowires" 115 (115): 024302-, 2014

      68 K. T. Lam, "An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges" 92 (92): 223106-, 2008

      69 T. Y. Ng, "A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone–Thrower–Wales defects" 50 (50): 4887-4893, 2012

      70 G. Xie, "A bond-order theory on the phonon scattering by vacancies in two-dimensional materials" 4 : 5085-, 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼