<P>Simulation of a system-of-systems (SoS) model, which consists of a combat model and a network model, has been used to analyze the performance of network-centric warfare in detail. However, finding the combat model parameters satisfying the re...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107454534
2018
-
SCOPUS,SCIE
학술저널
1-15(15쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Simulation of a system-of-systems (SoS) model, which consists of a combat model and a network model, has been used to analyze the performance of network-centric warfare in detail. However, finding the combat model parameters satisfying the re...
<P>Simulation of a system-of-systems (SoS) model, which consists of a combat model and a network model, has been used to analyze the performance of network-centric warfare in detail. However, finding the combat model parameters satisfying the required combat power using simulation can take a long time for two reasons: (1) the prolonged execution time per simulation run and (2) the enormous number of simulation runs. This paper proposes a simulation-based optimization method for the SoS-based simulation model to overcome these problems. The method consists of two processes: (1) the transformation of the SoS-based model into an integrated model using the neural network to reduce the execution time and (2) the optimization of the integrated model using the genetic algorithm with ranking and selection to decrease the number of simulation runs. The experimental result reveals that the proposed method significantly reduced the time for finding the optimal combat parameters with an acceptable level of accuracy.</P>
Effects of HD-tDCS on Resting-State Functional Connectivity in the Prefrontal Cortex: An fNIRS Study
Forecasting Financial Crashes: Revisit to Log-Periodic Power Law
Improved Optimization for Wastewater Treatment and Reuse System Using Computational Intelligence