RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Multiple‐scale negative impacts of warming on ecosystem carbon use efficiency across the Tibetan Plateau grasslands

      한글로보기

      https://www.riss.kr/link?id=O105637179

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Ecosystem carbon use efficiency (CUEe) is a core parameter of ecosystem process models, but its relationships with climate are still uncertain, especially for ecosystems with harsh environments. Large inconsistencies in climate impacts on the CUEe hav...

      Ecosystem carbon use efficiency (CUEe) is a core parameter of ecosystem process models, but its relationships with climate are still uncertain, especially for ecosystems with harsh environments. Large inconsistencies in climate impacts on the CUEe have been reported among various spatial scales. The goal of this study was to examine whether warming promotes or restricts the CUEe and whether the CUEe responds to a warming gradient in a linear or nonlinear manner.
      Tibetan Plateau.
      2000–2018.
      Alpine grassland ecosystem.
      We integrated multiple‐source data of carbon fluxes and CUEe, including warming experiments at a site scale, eddy covariance observations at a landscape scale and synthesized warming experiments and ecosystem process models at a regional scale. Next, we deployed a statistical model to examine the warming impacts on the CUEe across scales; the effects of biotic and abiotic factors on the CUEe and its components were summarized based on the results of standardized major axis tests and routines, structural equation modelling and nonlinear models.
      This study reported a suppressive warming impact on the CUEe, which followed a nonlinear curve with severe inhibition in the high‐level warming treatment. With a warming threshold of 1.5–2.0°C, CUEe response patterns transitioned from no change to a significant decrease. The restriction effects can be ascribed to the joint adverse and asymmetric effects of warming on CUEe components under multiple‐level warming. Warming‐modified relationships among CUEe components and the nonlinear effects of biotic and abiotic factors led to the nonlinear responses of CUEe to warming.
      This study revealed suppressive and nonlinear effects of warming on the CUEe, including especially dramatic CUEe decreases with high‐level warming. These findings are critical for optimizing model parameters and improving predictions of the carbon sequestration capacity of alpine grasslands.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼