RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO2 Methanation

      한글로보기

      https://www.riss.kr/link?id=O117879857

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The effect of the LnOx support has been studied for Ni‐based CO2 methanation catalysts. 10 wt.% nickel catalysts with LaOx, CeO2 and PrOx supports have been prepared, characterized by N2 adsorption, XRD, XRF, TG‐MS (N2‐TPD and H2‐TPR) and XP...

      The effect of the LnOx support has been studied for Ni‐based CO2 methanation catalysts. 10 wt.% nickel catalysts with LaOx, CeO2 and PrOx supports have been prepared, characterized by N2 adsorption, XRD, XRF, TG‐MS (N2‐TPD and H2‐TPR) and XPS, and have been tested for CO2 methanation. The catalytic activity follows the trend Ni/CeO2>Ni/PrOx≫Ni/LaOx, all catalysts being very selective towards CH4 formation. The activity depends both on the nature of the catalytic active sites and on the stability of the surface CO2 and H2O species. Ni/CeO2 is the most active catalyst because (i) the Ni2+‐ceria interaction leads to the formation of the highest population of active sites for CO2 dissociation, (ii) the reduced Ni0 sites where H2 dissociation takes place are the most electronegative and active, and (iii) the stability of surface CO2 and H2O species is lowest. Ni/LaOx achieves lower activity because of the strong chemisorption of H2O and CO2, which poison the catalyst surface, and because this support is not able to promote the formation of highly active sites for CO2 and H2 dissociation. The behavior of Ni/PrOx is intermediate, being slightly lower to that of Ni/CeO2 because the formation of active sites is not so efficient and because the stability of chemisorbed CO2 is slightly higher.
      Thanks for your support: Ni/CeO2 is the most active Ni/LnOx catalyst because (i) the Ni2+‐ceria interaction leads to the formation of the highest population of active sites for CO2 dissociation, (ii) the reduced Ni0 sites where H2 dissociation takes place are the most electronegative and active, and (iii) the stability of surface CO2 and H2O species is lowest.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼