RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      폐기물 소각시설에서의 CO2 배출량 산정방법에 대한 비교 연구 = Comparison of the methods for estimation of CO2 emission from waste incinerators

      한글로보기

      https://www.riss.kr/link?id=T15060368

      • 저자
      • 발행사항

        부산: 부경대학교 대학원, 2019

      • 학위논문사항
      • 발행연도

        2019

      • 작성언어

        한국어

      • KDC

        539 판사항(5)

      • 발행국(도시)

        부산

      • 형태사항

        ⅻ, 142p.: 표; 26cm

      • 일반주기명

        부경대학교 논문은 저작권에 의해 보호받습니다.
        지도교수:강임석
        참고문헌 수록

      • UCI식별코드

        I804:21031-200000178121

      • 소장기관
        • 국립부경대학교 도서관 소장기관정보
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      According to the IPCC Climate Change Comprehensive Assessment Report published in 2014, CO2 released into the atmosphere from the 1750s to 2011 is estimated to be 2040±310GtCO2, and 50% of the total greenhouse gases released into the atmosphere since the Industrial Revolution. In particular, despite the global greenhouse gas reduction measures since the 2000s, the impact of negative climate change is increasing as greenhouse gas emissions are deepening. In order to reduce the emission of greenhouse gases, it is the first step to calculate the exact emission for each source. Therefore, the Climate Change Convention(UNFCCC) provides guidelines through IPCC for calculating the amount of greenhouse gases emitted by each country. In regard to this, in the case of incineration of waste, the calculation process is complicated, so it is recommended that the method by direct measurement is very accurate and transparent.
      Currently, in the case of domestic waste incineration facilities, the calculation of greenhouse gas emissions is estimated by calculation method. In this case, CO2 emissions are calculated considering the characteristics analysis of incinerated wastes such as amount, dry weight and carbon content. However, each emission factor applied in the calculation process has a low accuracy and high uncertainty in that it is calculated using some measurements and most of them uses the default value(Default Factor) provided by the IPCC. Therefore, the IPCC recommends direct measurement for estimating greenhouse gases in waste incineration facilities. At this points, due to the infrastructure of Tele-Monitoring System(TMS) established in Korea, continuous measurement of CO2 emissions(CEMS) is possible in waste incineration facilities.
      Therefore, in order to study the effectiveness of calculating greenhouse gas emissions through continuous measurement of waste incineration facilities, we selected waste incineration facilities operated in Korea and applied Tier1 calculation method(calculation formula) according to IPCC guidelines and Tier4 a continuous measurement method which is the fundamental purpose of this study, are compared and analyzed. In addition, we tried to identify the problems of the method of calculating the greenhouse gas emissions of the waste incineration sector currently applied by comparing the emission factors provided by the IPCC guidelines with the average value of the incineration facilities selected in this study. The study was conducted annually from 2014 to 2016 in consideration of the time series. The target incinerators for the study was conducted at two municipal and two industrial waste incinerators in consideration of the characteristics of incineration waste.
      The main results of this study are that the proportion of 6 wastes in CO2 emissions in the order of plastics, papers, and textiles in the municipal waste incineration is estimated to exceed 95%, and in the case of industrial wastes, CO2 emissions from 4 waste types, including petroleum, others, and construction waste exceeded 95% of total emissions.
      Second, in the case of municipal waste incineration, there is a certain level of difference between Tier1 and Tier3 CO2 calculations, however in case of Tier4 CO2 emission is depended on the incineration efficiency. This consideration is also found in the industrial waste incineration.
      Third, Tier1 relative uncertainty is found to be between 21.11% and 74.29% in M-B facilities, which are municipal waste, and 78.05% and 430.21% in I-B facilities, which are industrial waste. The relative uncertainty according to the Tier3 method was found to range from 9.22% to 38.48% in M-B facilities, which are municipal waste facilities, and from 20.05% to 765% in I-B facilities, In the case of Tier4, the CO2 concentration uncertainty of municipal waste M-B facility performed during the inspection period was an average of 0.02405, and the average uncertainty of the flow period was 0.03442727. As a result, the relative uncertainty of the M-B facility was 4.118 percent, and the relative uncertainty of the I-B facility was 10.564 percent.
      Therefore, in the case of domestic incineration facilities, it is advantageous to calculate CO2 emissions by continuous measurement method using the currently constructed TMS infrastructure in terms of accuracy of emission and transparency of the calculation process.
      번역하기

      According to the IPCC Climate Change Comprehensive Assessment Report published in 2014, CO2 released into the atmosphere from the 1750s to 2011 is estimated to be 2040±310GtCO2, and 50% of the total greenhouse gases released into the atmosphere since...

      According to the IPCC Climate Change Comprehensive Assessment Report published in 2014, CO2 released into the atmosphere from the 1750s to 2011 is estimated to be 2040±310GtCO2, and 50% of the total greenhouse gases released into the atmosphere since the Industrial Revolution. In particular, despite the global greenhouse gas reduction measures since the 2000s, the impact of negative climate change is increasing as greenhouse gas emissions are deepening. In order to reduce the emission of greenhouse gases, it is the first step to calculate the exact emission for each source. Therefore, the Climate Change Convention(UNFCCC) provides guidelines through IPCC for calculating the amount of greenhouse gases emitted by each country. In regard to this, in the case of incineration of waste, the calculation process is complicated, so it is recommended that the method by direct measurement is very accurate and transparent.
      Currently, in the case of domestic waste incineration facilities, the calculation of greenhouse gas emissions is estimated by calculation method. In this case, CO2 emissions are calculated considering the characteristics analysis of incinerated wastes such as amount, dry weight and carbon content. However, each emission factor applied in the calculation process has a low accuracy and high uncertainty in that it is calculated using some measurements and most of them uses the default value(Default Factor) provided by the IPCC. Therefore, the IPCC recommends direct measurement for estimating greenhouse gases in waste incineration facilities. At this points, due to the infrastructure of Tele-Monitoring System(TMS) established in Korea, continuous measurement of CO2 emissions(CEMS) is possible in waste incineration facilities.
      Therefore, in order to study the effectiveness of calculating greenhouse gas emissions through continuous measurement of waste incineration facilities, we selected waste incineration facilities operated in Korea and applied Tier1 calculation method(calculation formula) according to IPCC guidelines and Tier4 a continuous measurement method which is the fundamental purpose of this study, are compared and analyzed. In addition, we tried to identify the problems of the method of calculating the greenhouse gas emissions of the waste incineration sector currently applied by comparing the emission factors provided by the IPCC guidelines with the average value of the incineration facilities selected in this study. The study was conducted annually from 2014 to 2016 in consideration of the time series. The target incinerators for the study was conducted at two municipal and two industrial waste incinerators in consideration of the characteristics of incineration waste.
      The main results of this study are that the proportion of 6 wastes in CO2 emissions in the order of plastics, papers, and textiles in the municipal waste incineration is estimated to exceed 95%, and in the case of industrial wastes, CO2 emissions from 4 waste types, including petroleum, others, and construction waste exceeded 95% of total emissions.
      Second, in the case of municipal waste incineration, there is a certain level of difference between Tier1 and Tier3 CO2 calculations, however in case of Tier4 CO2 emission is depended on the incineration efficiency. This consideration is also found in the industrial waste incineration.
      Third, Tier1 relative uncertainty is found to be between 21.11% and 74.29% in M-B facilities, which are municipal waste, and 78.05% and 430.21% in I-B facilities, which are industrial waste. The relative uncertainty according to the Tier3 method was found to range from 9.22% to 38.48% in M-B facilities, which are municipal waste facilities, and from 20.05% to 765% in I-B facilities, In the case of Tier4, the CO2 concentration uncertainty of municipal waste M-B facility performed during the inspection period was an average of 0.02405, and the average uncertainty of the flow period was 0.03442727. As a result, the relative uncertainty of the M-B facility was 4.118 percent, and the relative uncertainty of the I-B facility was 10.564 percent.
      Therefore, in the case of domestic incineration facilities, it is advantageous to calculate CO2 emissions by continuous measurement method using the currently constructed TMS infrastructure in terms of accuracy of emission and transparency of the calculation process.

      더보기

      목차 (Table of Contents)

      • 1. 서 론 1
      • 2. 이론적 배경 5
      • 2.1. 온실가스 배출량 산정 5
      • 2.1.1. 국제적 기준 5
      • 2.1.1.1. IPCC 지침 개념 5
      • 1. 서 론 1
      • 2. 이론적 배경 5
      • 2.1. 온실가스 배출량 산정 5
      • 2.1.1. 국제적 기준 5
      • 2.1.1.1. IPCC 지침 개념 5
      • 2.1.1.2. IPCC의 직접측정 7
      • 2.1.1.3. IPCC 폐기물 소각 지침 9
      • 2.1.2. 국내 산정방법 12
      • 2.1.2.1. 국가 배출량 산정 12
      • 2.1.2.2. 배출권거래제 적용현황 13
      • 2.1.2.3. 배출권거래제 연속측정 15
      • 2.2. 연속측정 국내외 사례 18
      • 2.2.1 국내사례 18
      • 2.2.1.1. 굴뚝 연속자동측정시스템(TMS) 18
      • 2.2.1.2. 국내 연속측정 연구사례 20
      • 2.2.2. 해외사례 22
      • 2.2.2.1. 미국의 사례 23
      • 2.2.2.2. 유럽의 사례 25
      • 2.2.3. 국내외 사례비교 29
      • 2.3. 불확도의 개념 30
      • 2.3.1. 불확도 정의 30
      • 2.3.2. 불확도 원인 31
      • 2.3.3. 불확도 평가절차 32
      • 2.3.4. 불확도 평가방법 34
      • 3. 연구방법 37
      • 3.1. 측정 소각시설 선정 37
      • 3.1.1. 측정소각시설 현황 40
      • 3.1.1.1. M-B 소각시설 40
      • 3.1.1.2. M-Y 소각시설 40
      • 3.1.1.3. I-B 소각시설 41
      • 3.1.1.4. I-K 소각시설 41
      • 3.2. CO2 배출계수 분석 42
      • 3.2.1. 폐기물 성상분석 42
      • 3.2.2. 건조무게(dm) 측정 44
      • 3.2.3. 폐기물 탄소함량(FC) 분석 45
      • 3.2.4. 화석탄소함량(FCF) 분석 45
      • 3.2.4.1. 시료 샘플링 45
      • 3.2.4.2. 화석탄소함량 분석장치 46
      • 3.2.4.3. 화석탄소함량 분석방법 47
      • 3.3. CO2 연속측정 시스템 50
      • 3.3.1. CO2 연속측정기기 51
      • 3.3.2. 교정용 가스 53
      • 3.3.3. 측정기기 성능 53
      • 3.3.4. 연속측정 시스템 구성 55
      • 3.3.5. 측정기기 정도관리 56
      • 3.3.6. 측정기기 유지관리 58
      • 3.4. 배출량 산정방법 59
      • 3.5. 불확도 검증 62
      • 3.5.1. Tier1 불확도 산정 62
      • 3.5.2. Tier3 불확도 산정 63
      • 3.5.3. Tier4 불확도 산정 64
      • 4. 결과 및 고찰 69
      • 4.1. 방식별(Tier) 배출량 분석 70
      • 4.1.1. 방식별 배출계수 결과 70
      • 4.1.1.1. 시설별 폐기물 성상 비율 70
      • 4.1.1.2. 시설별 폐기물 (dm, CF) 분석 75
      • 4.1.2. 배출계수 보정 및 배출량 평가 83
      • 4.1.2.1. 배출계수 보정 83
      • 4.1.2.2. 방식별 배출량 분석 85
      • 4.2. 연속측정(Tier4) 실효성 평가 89
      • 4.2.1 방식별 배출계수 결과 89
      • 4.2.1.1. 시설별 폐기물 성상비율 89
      • 4.2.1.2. 시설별 폐기물(dm, CF) 분석 97
      • 4.2.1.3. 시설별 화석탄소함량(FCF) 결과 111
      • 4.2.2. 배출계수 종합평가 113
      • 4.2.3 시설별 배출량 산정결과 115
      • 4.3. 연속측정(Tier4) 검증 119
      • 4.3.1 배출계수(dm, CF) 개발 119
      • 4.3.2 화석탄소함량 (FCF) 개발 122
      • 4.3.3 배출량 산정결과 126
      • 4.4. 방식별 불확도 평가 132
      • 5. 요약 및 결론 135
      • References 142
      더보기

      참고문헌 (Reference) 논문관계도

      1 박영권, 지앤에스이노베이션, "소각시설 대상 CO2 (Tier4) 실측도입", 한국 환경공단 용역보고서, pp. 163-224, 2013

      2 김용건, 온실가스종합정보센터, "2017 국가 온실가스 인벤토리 보고서", , , pp. 331-335, 2017

      3 세종대학교, 전의찬, "소각대상 폐기물의 화석탄소함량(FCF) 분석기법", 한국환경공단 용역보고서, pp. 71-78, 2013

      4 한국환경공단, 환경부, "전국 폐기물 발생 및 처리 현황(2014년도 수정본),", KECO 2015-PE18-35, 2015

      5 한국환경공단, 환경부, "전국 폐기물 발생 및 처리 현황(2015년도 수정본),", KECO 2016-PE10-24, 2016

      6 환경부, "온실가스․에너지 목표관리 운영 등에 관한 지침", 환경부고시 제2016-255호, 2016

      7 김승진, 전의찬, 임기교, 이지영, 이시형, 사재환, "폐기물자원회수시설의 이산화탄소 배출계수 개발", 한국기후변화학회지 Vol. 4, No. 1, 2013, pp. 51-61, 2013

      8 환경부, "수도권 사업장 대기오염물질 총량관리제 업무편람", 발간등록번 호 11-1480000-001521-01, 2018

      9 임기교, "12, 생활폐기물 소각시설의 온실가스 배출계수 개발", 세종대학교 석사학위 논문, 27-32, 2011

      10 방천희, 최은화, 진병복, 전웅렬, 이준기, 윤완우, "소각시설의 연속측정에 의한 온실가스 배출특성조사", 한국대기환경학회 2008년 춘계학술대회논 문집, 2008.4, 263-265, 2008

      1 박영권, 지앤에스이노베이션, "소각시설 대상 CO2 (Tier4) 실측도입", 한국 환경공단 용역보고서, pp. 163-224, 2013

      2 김용건, 온실가스종합정보센터, "2017 국가 온실가스 인벤토리 보고서", , , pp. 331-335, 2017

      3 세종대학교, 전의찬, "소각대상 폐기물의 화석탄소함량(FCF) 분석기법", 한국환경공단 용역보고서, pp. 71-78, 2013

      4 한국환경공단, 환경부, "전국 폐기물 발생 및 처리 현황(2014년도 수정본),", KECO 2015-PE18-35, 2015

      5 한국환경공단, 환경부, "전국 폐기물 발생 및 처리 현황(2015년도 수정본),", KECO 2016-PE10-24, 2016

      6 환경부, "온실가스․에너지 목표관리 운영 등에 관한 지침", 환경부고시 제2016-255호, 2016

      7 김승진, 전의찬, 임기교, 이지영, 이시형, 사재환, "폐기물자원회수시설의 이산화탄소 배출계수 개발", 한국기후변화학회지 Vol. 4, No. 1, 2013, pp. 51-61, 2013

      8 환경부, "수도권 사업장 대기오염물질 총량관리제 업무편람", 발간등록번 호 11-1480000-001521-01, 2018

      9 임기교, "12, 생활폐기물 소각시설의 온실가스 배출계수 개발", 세종대학교 석사학위 논문, 27-32, 2011

      10 방천희, 최은화, 진병복, 전웅렬, 이준기, 윤완우, "소각시설의 연속측정에 의한 온실가스 배출특성조사", 한국대기환경학회 2008년 춘계학술대회논 문집, 2008.4, 263-265, 2008

      11 국립환경과학원, 홍지형, "환경부문 온실가스 배출량 inventory 작성 및 배출계수 개발", , pp. 382-385, 2008

      12 박상우, 한국환경산업기술원, "소각부문의 온실가스 배출량 산정방법 비교: 1996과 2006 지침", , pp. 9-13, 2017

      13 추용엽, 한국산업기술시험원, "온실가스 연속측정 관련 기준 및 가이드라 인 마련을 위한 연구", 한국환경공단 용역보고서, pp. 126-130, 2013

      14 이혜영, "폐기물소각시설에서 발생하는 CO2 배출량 산정방법에 관한 연구", 서울대학교 석사학위 논문, pp. 32-40, 2012

      15 권영성, "하수처리시설에 대한 메탄 배출계수 개발 및 적용성에 관한 연구", 부경대학교 공학박사 학위논문, pp. 27-29, 2015

      16 김승도, 한림대학교, "폐기물 소각시설의 온실가스 배출특성 분석 및 실측방 법(Tier4) 적용기반 마련", 한국환경공단 용역보고서, pp. 181-189, 2014

      17 김승도, 진병복, 김의건, "발열량을 이용한 생활폐기물 소각시설의 CO2 온실가스 배출량 산정방법에 대한 연구", 한국폐기물자원순환학회 학술대회, Vol. 2011 No.1, 452-454, 2011

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼