RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Techno‐economic comparative assessment of novel lignin depolymerization routes to bio‐based aromatics

      한글로보기

      https://www.riss.kr/link?id=O116338373

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents a techno‐economic assessment of three novel routes for the production of bio‐based aromatics from lignin. It aims to provide insights into their feasibility and hotspots at an early stage of development to guide further researc...

      This paper presents a techno‐economic assessment of three novel routes for the production of bio‐based aromatics from lignin. It aims to provide insights into their feasibility and hotspots at an early stage of development to guide further research and development and to facilitate commercialization. The lignin conversion routes are: (non‐catalytic) lignin pyrolysis, direct hydrodeoxygenation (HDO), and hydrothermal upgrading (HyThUp). The products generated are mixed oxygenated aromatic monomers (MOAMON), light organics, heavy organics, and char. For the technical assessment, conceptual design followed by process modeling in Aspen Plus was based on experimental yields. The models generated indispensable data on material and energy flows. An economic assessment was then conducted by estimating operating and capital costs. Return on investment (ROI), payback period (PBP), and net present value (NPV) were used as key performance indicators. Downstream processing was especially demanding in the HyThUp process due to the presence of a significant flow rate of water in the system, which significantly increased external utility requirements. Due to complex separations, the HyThUp process showed the highest capital cost (35% more than pyrolysis). Operating costs were the highest for the direct HDO process (34% more than pyrolysis) due to the use of hydrogen. Overall, the direct HDO process showed the highest ROI (12%) and the shortest PBP (5 years) due to high yields of valuable heavy organics (32%) and MOAMON (24%). Direct HDO was found to be feasible with a positive NPV based on prices used in the assessment. Among the three processes investigated, the direct HDO process therefore appeared to be the most promising, and consideration should be given to further development and commercialization of this process. © 2019 The Authors. Biofuels, Bioproducts, and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼