RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Trinomial $GF(2^m)$ 승산기의 하드웨어 구성에 관한 연구 = A Study on the Hardware Architecture of Trinomial $GF(2^m)$ Multiplier

      한글로보기

      https://www.riss.kr/link?id=A105641098

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study focuses on the arithmetical methodology and hardware implementation of low-system-complexity multiplier over GF(2$^{m}$ ) using the trinomial of degree a The proposed parallel-in parallel-out operator is composed of MR, PP, and MS modules, each can be established using the regular array structure of AND and XOR gates. The proposed multiplier is composed of $m^2$ 2-input AND gates and $m^2$-1 2-input XOR gates, and the propagation delay is $T_{A}$+(1+[lo $g_2$$^{m}$ ]) $T_{x}$ . Comparison result of the related multipliers of GF(2$^{m}$ ) are shown by table, it reveals that our operator involve more regular and generalized then the others, and therefore well-suited for VLSI implementation. Moreover, our multiplier is more suitable for any other GF(2$^{m}$ ) operational applications.s.
      번역하기

      This study focuses on the arithmetical methodology and hardware implementation of low-system-complexity multiplier over GF(2$^{m}$ ) using the trinomial of degree a The proposed parallel-in parallel-out operator is composed of MR, PP, and MS modules, ...

      This study focuses on the arithmetical methodology and hardware implementation of low-system-complexity multiplier over GF(2$^{m}$ ) using the trinomial of degree a The proposed parallel-in parallel-out operator is composed of MR, PP, and MS modules, each can be established using the regular array structure of AND and XOR gates. The proposed multiplier is composed of $m^2$ 2-input AND gates and $m^2$-1 2-input XOR gates, and the propagation delay is $T_{A}$+(1+[lo $g_2$$^{m}$ ]) $T_{x}$ . Comparison result of the related multipliers of GF(2$^{m}$ ) are shown by table, it reveals that our operator involve more regular and generalized then the others, and therefore well-suited for VLSI implementation. Moreover, our multiplier is more suitable for any other GF(2$^{m}$ ) operational applications.s.

      더보기

      국문 초록 (Abstract)

      본 논문에서는 m차 trinomial을 적용한 새로운 GF(2m)상의 승산기법과 그 구현회로를 제안하였다. 제안한 연산기법들을 각각 MR, PP 및 MS라 명칭한 연산모듈로 구현하였고, 이들을 조직화하여 새로운 GF(2/sup m/) 병렬 승산회로를 구성하였다. 제안된 GF(2/sup m/) 승산기의 회로복잡도는 ㎡ 2-입력 AND게이트와 ㎡-1 2-입력 XOR게이트이며, 연산에 소요되는 지연시간은 T/sub A/+(1+[log₂/sup m/])T/sub x/이다. 제안된 연산기의 시스템 복잡도와 구성상의 특징을 타 연산기들과 비교하였고, 그 결과를 표로 정리하여 보였다. 제안된 승산기는 정규화된 모듈구조와 확장성을 가지므로 VLSI 구현에 적합하며, 타 연산회로로의 응용이 용이하다.
      번역하기

      본 논문에서는 m차 trinomial을 적용한 새로운 GF(2m)상의 승산기법과 그 구현회로를 제안하였다. 제안한 연산기법들을 각각 MR, PP 및 MS라 명칭한 연산모듈로 구현하였고, 이들을 조직화하여 새...

      본 논문에서는 m차 trinomial을 적용한 새로운 GF(2m)상의 승산기법과 그 구현회로를 제안하였다. 제안한 연산기법들을 각각 MR, PP 및 MS라 명칭한 연산모듈로 구현하였고, 이들을 조직화하여 새로운 GF(2/sup m/) 병렬 승산회로를 구성하였다. 제안된 GF(2/sup m/) 승산기의 회로복잡도는 ㎡ 2-입력 AND게이트와 ㎡-1 2-입력 XOR게이트이며, 연산에 소요되는 지연시간은 T/sub A/+(1+[log₂/sup m/])T/sub x/이다. 제안된 연산기의 시스템 복잡도와 구성상의 특징을 타 연산기들과 비교하였고, 그 결과를 표로 정리하여 보였다. 제안된 승산기는 정규화된 모듈구조와 확장성을 가지므로 VLSI 구현에 적합하며, 타 연산회로로의 응용이 용이하다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼