RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      Self-activated Graphene Gas Sensors: A Mini Review = Self-activated Graphene Gas Sensors: A Mini Review

      한글로보기

      https://www.riss.kr/link?id=A106986892

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. Ho...

      Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.

      더보기

      참고문헌 (Reference)

      1 A. K. Geim, "Van der Waals heterostructures" 499 (499): 419-425, 2013

      2 S. Cui, "Ultrasensitive Chemical Sensing through Facile Tuning Defects and Functional Groups in Reduced Graphene Oxide" 86 (86): 7516-7522, 2014

      3 G. Lu, "Toward Practical Gas Sensing with Highly Reduced Graphene Oxide : A New Signal Processing Method to Circumvent Run-to-Run and Device-to-Device Variations" 5 (5): 1154-1164, 2011

      4 S. Jonda, "Temperature Control of Semiconductor Metal-Oxide Gas Sensors by Means of Fuzzy Logic" 34 (34): 396-400, 1996

      5 S. Capone, "Solid state gas sensors : State of the art and future activities" 5 (5): 1335-1348, 2003

      6 J. -H. Ahn, "Self-heated silicon nanowires for high performance hydrogen gas detection" 26 (26): 095501(1)-095501(10), 2015

      7 H. G. Moon, "Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors" 2 (2): 1-7, 2012

      8 Y. H. Kim, "Self-activated transparent allgraphene gas sensor with endurance to humidity and mechanical bending" 9 (9): 10453-10460, 2015

      9 S. Bae, "Roll-to-roll production of 30-inch graphene films for transparent electrodes" 5 (5): 574-578, 2010

      10 J. T. Robinson, "Reduced Graphene Oxide Molecular Sensors" 8 (8): 3137-3140, 2008

      1 A. K. Geim, "Van der Waals heterostructures" 499 (499): 419-425, 2013

      2 S. Cui, "Ultrasensitive Chemical Sensing through Facile Tuning Defects and Functional Groups in Reduced Graphene Oxide" 86 (86): 7516-7522, 2014

      3 G. Lu, "Toward Practical Gas Sensing with Highly Reduced Graphene Oxide : A New Signal Processing Method to Circumvent Run-to-Run and Device-to-Device Variations" 5 (5): 1154-1164, 2011

      4 S. Jonda, "Temperature Control of Semiconductor Metal-Oxide Gas Sensors by Means of Fuzzy Logic" 34 (34): 396-400, 1996

      5 S. Capone, "Solid state gas sensors : State of the art and future activities" 5 (5): 1335-1348, 2003

      6 J. -H. Ahn, "Self-heated silicon nanowires for high performance hydrogen gas detection" 26 (26): 095501(1)-095501(10), 2015

      7 H. G. Moon, "Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors" 2 (2): 1-7, 2012

      8 Y. H. Kim, "Self-activated transparent allgraphene gas sensor with endurance to humidity and mechanical bending" 9 (9): 10453-10460, 2015

      9 S. Bae, "Roll-to-roll production of 30-inch graphene films for transparent electrodes" 5 (5): 574-578, 2010

      10 J. T. Robinson, "Reduced Graphene Oxide Molecular Sensors" 8 (8): 3137-3140, 2008

      11 W. Li, "Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection" 5 (5): 6955-6961, 2011

      12 J. D. Fowler, "Practical Chemical Sensors from Chemically Derived Graphene" 3 (3): 301-306, 2009

      13 T. Yokoyama, "Pd-functionalized, suspended graphene nanosheet for fast, low-energy multimolecular sensors" 1 (1): 3886-3894, 2018

      14 K. Yu, "Patterning Vertically Oriented Graphene Sheets for Nanodevice Applications" 2 (2): 537-542, 2011

      15 G. Eranna, "Oxide materials for development of integrated gas sensors-A comprehensive review" 29 (29): 111-188, 2004

      16 L. Yang, "Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities" 8 (8): 6487-6500, 2020

      17 M. G. Stanford, "Laser-Induced Graphene for Flexible and Embeddable Gas Sensors" 13 (13): 3474-3482, 2019

      18 K. S. Kim, "Large-scale pattern growth of graphene films for stretchable transparent electrodes" 457 (457): 706-710, 2009

      19 Y. Dan, "Intrinsic Response of Graphene Vapor Sensors" 9 (9): 1472-1475, 2009

      20 J. Mizsei, "How can Sensitive Semiconductor Gas Sensors be Made?" 23 (23): 173-176, 1995

      21 M. W. Nomani, "Highly Sensitive and Selective Detection of NO2 Using Epitaxial Graphene on 6H-SiC" 150 (150): 301-307, 2010

      22 A. Lipatov, "Highly Selective Gas Sensor Arrays Based on Thermally Reduced Graphene Oxide" 5 (5): 5426-5434, 2013

      23 J. Ahn, "Graphene for displays that bend" 9 (9): 737-738, 2014

      24 G. Lu, "Gas Detection Using Low-Temperature Reduced Graphene Oxide Sheets" 94 (94): 083111(1)-083111(3), 2009

      25 H. Choi, "Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers" 10 (10): 3685-3691, 2014

      26 M. R. Bobinger, "Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates" 144 : 116-126, 2019

      27 F. Schedin, "Detection of Individual Gas Molecules Adsorbed on Graphene" 6 (6): 652-655, 2007

      28 M. Penza, "Classification of food, beverages and perfumes by WO3 thinfilm sensors array and pattern recognition techniques" 73 (73): 76-87, 2001

      29 Y. H. Kim, "Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels" 5 (5): 19116-19125, 2017

      30 Q. He, "Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films : Fabrication and Sensing Applications" 4 (4): 3201-3208, 2010

      31 Y. Kim, "Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen" 11 (11): 2966-2973, 2019

      32 Y. Kim, "Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen" 11 (11): 2966-2973, 2019

      33 K. S. Novoselov, "A roadmap for graphene" 490 (490): 192-200, 2012

      34 D. Wu, "A Simple Graphene NH3Gas Sensor via Laser Direct Writing" 18 (18): 4405(1)-4405(10), 2018

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 계속평가 신청대상 (계속평가)
      2021-12-01 평가 등재후보로 하락 (재인증) KCI등재후보
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.22 0.22 0.16
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.15 0.13 0.319 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼