RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Magnetically Separable Fe3O4@CdS Type‐II Nanohybrids with Excellent Photocatalytic Activity and Antibacterial Properties

      한글로보기

      https://www.riss.kr/link?id=O118958806

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Online ISSN

        2192-6506

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        769-779   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A magnetically separable Fe3O4@CdS type‐II core–shell nanohybrid (NH) photocatalyst, with excellent antibacterial properties and photocatalytic activity, was synthesized and characterized by means of structural, elemental, and morphological analyses. Steady‐state and time‐resolved emission and absorption spectroscopy were also exploited to realize the location of charge‐carrier wave functions in the NHs. The antibacterial activity of NHs was then evaluated against Escherichia coli (1.4×108 CFU mL−1; CFU=colony forming units) and Staphylococcus saprophyticus (1.2×108 CFU mL−1) as model strains of Gram‐negative and ‐positive microbes. Compared with CdS and Fe3O4, the as‐synthesized Fe3O4@CdS composite exhibited highly improved bactericidal activity and recyclability. Concentration values of 5.0 and 4.0 mg mL−1 were required for Fe3O4@CdS NHs to inhibit the growth of E. coli and S. saprophyticus, respectively. The contribution of OH. radicals to photocatalysis at the Fe3O4@CdS surface was also considered. Moreover, thiobarbituric acid reactive substances and protein carbonyl assay protocols have been exploited to monitor levels of oxidative damage to lipids and proteins in cells. Additionally, the photocatalytic activity of Fe3O4@CdS NHs was monitored for the degradation of xylenol orange dye. Compared with CdS and Fe3O4, as‐synthesized Fe3O4@CdS displayed superior performances in the photodegradation of xylenol orange. Possible mechanisms involved in the degradation of xylenol orange are also discussed.
      Split personality: Cascade charge transfer in magnetite (Fe3O4)@CdS type‐II core–shell nanocrystals (see figure) facilitates charge separation and retards charge pair recombination (5.5‐fold slower compared with CdS quantum dots and 14.7‐fold slower compared with Fe3O4 nanoparticles) for enhanced photocatalytic and antibacterial applications.
      번역하기

      A magnetically separable Fe3O4@CdS type‐II core–shell nanohybrid (NH) photocatalyst, with excellent antibacterial properties and photocatalytic activity, was synthesized and characterized by means of structural, elemental, and morphological analys...

      A magnetically separable Fe3O4@CdS type‐II core–shell nanohybrid (NH) photocatalyst, with excellent antibacterial properties and photocatalytic activity, was synthesized and characterized by means of structural, elemental, and morphological analyses. Steady‐state and time‐resolved emission and absorption spectroscopy were also exploited to realize the location of charge‐carrier wave functions in the NHs. The antibacterial activity of NHs was then evaluated against Escherichia coli (1.4×108 CFU mL−1; CFU=colony forming units) and Staphylococcus saprophyticus (1.2×108 CFU mL−1) as model strains of Gram‐negative and ‐positive microbes. Compared with CdS and Fe3O4, the as‐synthesized Fe3O4@CdS composite exhibited highly improved bactericidal activity and recyclability. Concentration values of 5.0 and 4.0 mg mL−1 were required for Fe3O4@CdS NHs to inhibit the growth of E. coli and S. saprophyticus, respectively. The contribution of OH. radicals to photocatalysis at the Fe3O4@CdS surface was also considered. Moreover, thiobarbituric acid reactive substances and protein carbonyl assay protocols have been exploited to monitor levels of oxidative damage to lipids and proteins in cells. Additionally, the photocatalytic activity of Fe3O4@CdS NHs was monitored for the degradation of xylenol orange dye. Compared with CdS and Fe3O4, as‐synthesized Fe3O4@CdS displayed superior performances in the photodegradation of xylenol orange. Possible mechanisms involved in the degradation of xylenol orange are also discussed.
      Split personality: Cascade charge transfer in magnetite (Fe3O4)@CdS type‐II core–shell nanocrystals (see figure) facilitates charge separation and retards charge pair recombination (5.5‐fold slower compared with CdS quantum dots and 14.7‐fold slower compared with Fe3O4 nanoparticles) for enhanced photocatalytic and antibacterial applications.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼