<P>We investigated the growth mechanism of ZnO(001) nanorods on SrTiO3(001) substrates. In the beginning of ZnO growth, a ZnO(110) film was developed on SrTiO3 substrates and then (001)-oriented ZnO nanorods grew on the ZnO(110) film. The strain...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107734396
2015
-
학술저널
5306-5309(4쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>We investigated the growth mechanism of ZnO(001) nanorods on SrTiO3(001) substrates. In the beginning of ZnO growth, a ZnO(110) film was developed on SrTiO3 substrates and then (001)-oriented ZnO nanorods grew on the ZnO(110) film. The strain...
<P>We investigated the growth mechanism of ZnO(001) nanorods on SrTiO3(001) substrates. In the beginning of ZnO growth, a ZnO(110) film was developed on SrTiO3 substrates and then (001)-oriented ZnO nanorods grew on the ZnO(110) film. The strain energy of ZnO(110) growth on SrTiO3(001) planes was approximately 2.7 x 10(8) J/m3 whereas it was estimated to be ~1.61 x 10(9) J/m3 for ZnO(001) directly grown on SrTiO3(001) planes using Young's modulus of elasticity. Stress due to the lattice mismatch between ZnO and SrTiO3 was mostly relaxed in several monolayers and then ZnO(001) nanorods were finally formed along their easy growth directions. Keywords: ZnO Nanorod, Hetero-Interface, Local Structural, Growth Mechanism.</P>
Self-Assembly of CdTe Nanoparticles Into Nanowires by a Specific Wavelength of Light.