RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      특허문헌 텍스트 마이닝을 통한 비특허문헌 자동분류에 관한 연구 = Automatic Classification of Non-Patent Literature via Patent-Literature Text Mining

      한글로보기

      https://www.riss.kr/link?id=A109122053

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      To file a patent or examine a submitted patent, one must perform a prior-art search that includes both patent and non-patent literature. Unlike patent literature, non-patent literature is not standardized and lacks a unified search system, thus necess...

      To file a patent or examine a submitted patent, one must perform a prior-art search that includes both patent and non-patent literature. Unlike patent literature, non-patent literature is not standardized and lacks a unified search system, thus necessitating separate searches for patents and non-patents. This renders the process particularly challenging for the latter. Hence, classification methods used in patent literature are applied to non-patent literature in this study, thus enabling a search system that operates in the same manner as patent-literature searches. The proposal includes the application of machine-learning techniques to recommend or automatically assign patent-classification codes to non-patent literature. For example, a process is reviewed in which international patent classificationcodes are automatically assigned to scholarly papers using machine-learning algorithms. Based on analyzing methods that leverage text-similarity and text-classification algorithms, the automatic classification of non-patent literature through patent-literature text mining is shown to be effective and thus warrants further research. Building a database of non-patent literature coded with patent classifications can result in a more efficient prior-art search process by allowing searches under a unified classification system for both patent and non-patent literatures.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼