RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      USING FUZZY LOGIC CONTROLLER AND EVOLUTIONARY GENETIC ALGORITHM FOR AUTOMOTIVE ACTIVE SUSPENSION SYSTEM

      한글로보기

      https://www.riss.kr/link?id=A104637461

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study designs a fuzzy logic controller (FLC) for an active automobile suspension system in which the membership functions and control rules are optimized using a genetic algorithm (GA). The objective of the FLC is to strike an optimal balance bet...

      This study designs a fuzzy logic controller (FLC) for an active automobile suspension system in which the membership functions and control rules are optimized using a genetic algorithm (GA). The objective of the FLC is to strike
      an optimal balance between the ride comfort and the vehicle stability. The values of the crossover and mutation parameters in the GA are adapted dynamically during the convergence procedure using a fuzzy control scheme. The convergence state of the GA is determined by using a support vector machine (SVM) method to identify the variation in each of the genes of
      the best-fit GA chromosome following each iteration loop. The feasibility of the proposed GA-assisted FLC scheme is verified by performing a series of numerical simulations in which the characteristics of the controlled plant are compared with those observed in a passive suspension system and obtained under an optimal linear feedback controller. The results demonstrate
      that the GA-assisted FLC results in a lower suspension deflection, a reduced sprung mass acceleration and a lower bouncing distance between the tire and the ground.

      더보기

      다국어 초록 (Multilingual Abstract)

      This study designs a fuzzy logic controller (FLC) for an active automobile suspension system in which the membership functions and control rules are optimized using a genetic algorithm (GA). The objective of the FLC is to strike an optimal balance be...

      This study designs a fuzzy logic controller (FLC) for an active automobile suspension system in which the membership functions and control rules are optimized using a genetic algorithm (GA). The objective of the FLC is to strike
      an optimal balance between the ride comfort and the vehicle stability. The values of the crossover and mutation parameters in the GA are adapted dynamically during the convergence procedure using a fuzzy control scheme. The convergence state of the GA is determined by using a support vector machine (SVM) method to identify the variation in each of the genes of
      the best-fit GA chromosome following each iteration loop. The feasibility of the proposed GA-assisted FLC scheme is verified by performing a series of numerical simulations in which the characteristics of the controlled plant are compared with those observed in a passive suspension system and obtained under an optimal linear feedback controller. The results demonstrate
      that the GA-assisted FLC results in a lower suspension deflection, a reduced sprung mass acceleration and a lower bouncing distance between the tire and the ground.

      더보기

      참고문헌 (Reference)

      1 Vapnik, V. N., "The Nature of Statistical Learning Theory" Springer 2000

      2 Vapnik, V. N., "Statistical Learning Theory" Wiley 1998

      3 Jang, J. R., "Self-learning fuzzy controllers based on temporal back propagation" 3 : 123-714, 1992

      4 F. WANG, "STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES" 한국자동차공학회 8 (8): 361-373, 2007

      5 I. YOUN, "PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRALACTION" 한국자동차공학회 7 (7): 547-554, 2006

      6 Guo, X., "Optimization of fuzzy sets of fuzzy control system based on hierarchical genetic algorithms" 1463-1466, 2002

      7 Kropp, K., "Optimization of fuzzy logic controller inference rules using a genetic algorithms" 1090-1096, 1993

      8 Grefenstette, J. J., "Optimization of control parameters for genetic algorithms" 122-128, 1986

      9 M. SHIN, "OPTIMAL PERIOD AND PRIORITY ASSIGNMENT FOR ANETWORKED CONTROL SYSTEM SCHEDULED BY A FIXEDPRIORITY SCHEDULING SYSTEM" 한국자동차공학회 8 (8): 39-48, 2007

      10 Kuo, Y.-P., "GA-based fuzzy PI/PD controller for automotive active suspension system" 46 (46): 1051-1056, 1999

      1 Vapnik, V. N., "The Nature of Statistical Learning Theory" Springer 2000

      2 Vapnik, V. N., "Statistical Learning Theory" Wiley 1998

      3 Jang, J. R., "Self-learning fuzzy controllers based on temporal back propagation" 3 : 123-714, 1992

      4 F. WANG, "STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES" 한국자동차공학회 8 (8): 361-373, 2007

      5 I. YOUN, "PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRALACTION" 한국자동차공학회 7 (7): 547-554, 2006

      6 Guo, X., "Optimization of fuzzy sets of fuzzy control system based on hierarchical genetic algorithms" 1463-1466, 2002

      7 Kropp, K., "Optimization of fuzzy logic controller inference rules using a genetic algorithms" 1090-1096, 1993

      8 Grefenstette, J. J., "Optimization of control parameters for genetic algorithms" 122-128, 1986

      9 M. SHIN, "OPTIMAL PERIOD AND PRIORITY ASSIGNMENT FOR ANETWORKED CONTROL SYSTEM SCHEDULED BY A FIXEDPRIORITY SCHEDULING SYSTEM" 한국자동차공학회 8 (8): 39-48, 2007

      10 Kuo, Y.-P., "GA-based fuzzy PI/PD controller for automotive active suspension system" 46 (46): 1051-1056, 1999

      11 J.Z.FENG, "GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM" 한국자동차공학회 4 (4): 181-191, 2003

      12 S. J. CHO, "ESTIMATION OF RIDE QUALITY OF A PASSENGER CAR WITHNONLINEAR SUSPENSION" 한국자동차공학회 8 (8): 103-109, 2007

      13 L. WU, "COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL ANDSIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSIONBASED ON HIERARCHICAL MODELING METHOD" 한국자동차공학회 7 (7): 749-756, 2006

      14 Vapnik, V. N., "An overview of statistical learning theory" 88-999, 1999

      15 F. YU, "A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO" 한국자동차공학회 3 (3): 165-170, 2002

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-06-10 학술지명변경 한글명 : 한국자동차공학회 영문논문집 -> International Journal of Automotive Technology
      외국어명 : International Journal of Automotive Tech -> International Journal of Automotive Technology
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 SCIE 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.14 0.53 0.85
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.71 0.62 0.534 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼