RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      ORMN: 참조 표현 이해를 위한 심층 신경망 모델 = ORMN: A Deep Neural Network Model for Referring Expression Comprehension

      한글로보기

      https://www.riss.kr/link?id=A105121635

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Referring expressions are natural language constructions used to identify particular objects within a scene. In this paper, we propose a new deep neural network model for referring expression comprehension. The proposed model finds out the region of the referred object in the given image by making use of the rich information about the referred object itself, the context object, and the relationship with the context object mentioned in the referring expression. In the proposed model, the object matching score and the relationship matching score are combined to compute the fitness score of each candidate region according to the structure of the referring expression sentence. Therefore, the proposed model consists of four different sub-networks: Language Representation Network(LRN), Object Matching Network (OMN), Relationship Matching Network(RMN), and Weighted Composition Network(WCN). We demonstrate that our model achieves state-of-the-art results for comprehension on three referring expression datasets.
      번역하기

      Referring expressions are natural language constructions used to identify particular objects within a scene. In this paper, we propose a new deep neural network model for referring expression comprehension. The proposed model finds out the region of t...

      Referring expressions are natural language constructions used to identify particular objects within a scene. In this paper, we propose a new deep neural network model for referring expression comprehension. The proposed model finds out the region of the referred object in the given image by making use of the rich information about the referred object itself, the context object, and the relationship with the context object mentioned in the referring expression. In the proposed model, the object matching score and the relationship matching score are combined to compute the fitness score of each candidate region according to the structure of the referring expression sentence. Therefore, the proposed model consists of four different sub-networks: Language Representation Network(LRN), Object Matching Network (OMN), Relationship Matching Network(RMN), and Weighted Composition Network(WCN). We demonstrate that our model achieves state-of-the-art results for comprehension on three referring expression datasets.

      더보기

      국문 초록 (Abstract)

      참조 표현이란 장면 영상 내의 특정 물체를 가리키는 자연어 문장들을 의미한다. 본 논문에서는 참조 표현 이해를 위한 새로운 심층 신경망 모델을 제안한다. 본 논문에서 제안하는 모델은 장면 영상 내 대상 물체의 영역을 찾아내기 위해, 참조 표현에서 언급하는 대상 물체뿐만 아니라 보조 물체, 그리고 대상 물체와 보조 물체 사이의 관계까지 풍부한 정보를 활용한다. 또한 제안 모델에서는 영상 내 각 후보 영역의 적합도 계산을 위해 물체 적합도와 관계 적합도를 참조 표현의 문장 구조에 따라 결합한다. 따라서, 본 모델은 크게 총 네 가지 서브 네트워크들로 구성된다: 언어 표현 네트워크(LRN), 물체 정합 네트워크(OMN), 관계 정합 네트워크(RMN), 그리고 가중 결합 네트워크(WCN). 본 논문에서는 세 가지 서로 다른 참조 표현 데이터집합들을 이용한 실험을 통해, 제안 모델이 현존 최고 수준의 참조 표현 이해 성능을 보인다는 것을 입증하였다.
      번역하기

      참조 표현이란 장면 영상 내의 특정 물체를 가리키는 자연어 문장들을 의미한다. 본 논문에서는 참조 표현 이해를 위한 새로운 심층 신경망 모델을 제안한다. 본 논문에서 제안하는 모델은 ...

      참조 표현이란 장면 영상 내의 특정 물체를 가리키는 자연어 문장들을 의미한다. 본 논문에서는 참조 표현 이해를 위한 새로운 심층 신경망 모델을 제안한다. 본 논문에서 제안하는 모델은 장면 영상 내 대상 물체의 영역을 찾아내기 위해, 참조 표현에서 언급하는 대상 물체뿐만 아니라 보조 물체, 그리고 대상 물체와 보조 물체 사이의 관계까지 풍부한 정보를 활용한다. 또한 제안 모델에서는 영상 내 각 후보 영역의 적합도 계산을 위해 물체 적합도와 관계 적합도를 참조 표현의 문장 구조에 따라 결합한다. 따라서, 본 모델은 크게 총 네 가지 서브 네트워크들로 구성된다: 언어 표현 네트워크(LRN), 물체 정합 네트워크(OMN), 관계 정합 네트워크(RMN), 그리고 가중 결합 네트워크(WCN). 본 논문에서는 세 가지 서로 다른 참조 표현 데이터집합들을 이용한 실험을 통해, 제안 모델이 현존 최고 수준의 참조 표현 이해 성능을 보인다는 것을 입증하였다.

      더보기

      참고문헌 (Reference)

      1 J. Redmon, "You Only Look Once: Unified, Real-Time Object Detection" 779-788, 2016

      2 W. Liu, "SSD: Single Shot MultiBox Detector" 21-37, 2016

      3 R. Hu, "Natural Language Object Retrieval" 4555-4564, 2016

      4 R. Hu, "Modeling Relationships in Referential Expressions with Compositional Modular Networks" 1115-1124, 2017

      5 L. Yu, "Modeling Context in Referring Expressions" 69-85, 2016

      6 V. K. Nagaraja, "Modeling Context Between Objects for Referring Expression Understanding" 2016

      7 T.-Y. Lin, "Microsoft COCO: Common Objects in Context" 740-755, 2014

      8 J. Krishnamurthy, "Jointly Learning to Parse and Perceive: Connecting Natural Language to the Physical World" 1 : 193-206, 2013

      9 J. Pennington, "GloVe: Global Vectors for Word Representation" 1532-1543, 2014

      10 J. Mao, "Generation and Comprehension of Unambiguous Object Descriptions" 11-20, 2016

      1 J. Redmon, "You Only Look Once: Unified, Real-Time Object Detection" 779-788, 2016

      2 W. Liu, "SSD: Single Shot MultiBox Detector" 21-37, 2016

      3 R. Hu, "Natural Language Object Retrieval" 4555-4564, 2016

      4 R. Hu, "Modeling Relationships in Referential Expressions with Compositional Modular Networks" 1115-1124, 2017

      5 L. Yu, "Modeling Context in Referring Expressions" 69-85, 2016

      6 V. K. Nagaraja, "Modeling Context Between Objects for Referring Expression Understanding" 2016

      7 T.-Y. Lin, "Microsoft COCO: Common Objects in Context" 740-755, 2014

      8 J. Krishnamurthy, "Jointly Learning to Parse and Perceive: Connecting Natural Language to the Physical World" 1 : 193-206, 2013

      9 J. Pennington, "GloVe: Global Vectors for Word Representation" 1532-1543, 2014

      10 J. Mao, "Generation and Comprehension of Unambiguous Object Descriptions" 11-20, 2016

      11 S. Ren, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" 91-99, 2015

      12 R. Luo, "Comprehension-Guided Referring Expressions" 2017

      13 L. Yu, "A Joint Speaker-Listener-Reinforcer Model for Referring Expressions" 7282-7290, 2017

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼