RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      PERFORMANCE IMPROVEMENT OF AN ADSORPTION CHILLER USING COMPOSITE ADSORBENT, SILICA GEL IMPREGNATED WITH LITHIUM CHLORIDE, PAIRED WITH METHANOL AS THE ADSORBATE

      한글로보기

      https://www.riss.kr/link?id=A104422570

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study aimed at analyzing different operation strategies to improve the performance of anew type adsorption chiller employing a novel composite adsorbent, silica gel impregnated withlithium chloride, paired with methanol as the adsorbate. The chil...

      This study aimed at analyzing different operation strategies to improve the performance of anew type adsorption chiller employing a novel composite adsorbent, silica gel impregnated withlithium chloride, paired with methanol as the adsorbate. The chiller's experimental test resultsshowed an average Specific. Cooling Power (SCP) and Coeffient of Performance (COP) of286 W/kg and 0.48, respectively. This was when the average hot water inlet temperature,cooling water inlet temperature, and chilled water inlet temperature were 83C, 26C and 15C,respectively. In addition, the corresponding mass flow rates were 0.22, 0.39 and 0.09 kg/s, respectively.
      Despite the fact that the average SCP and COP, were rather satisfactory, analysis ofexperimental results conducted with different cycle times, inlet hot water temperatures, and hotwater flow rates showed that a much better performance could be achieved. Experimentalresults indicated the following: (1) the COP increased while the SCP decreased with increasedcycle time, (2) both the COP and the SCP increased with increase in heat and mass recoverytime to an optimal time then started to decrease as heat and mass recovery time increasedbeyond the optimal time, (3) both the cooling power and COP generally increased with increasein inlet hot water temperature at a relatively higher value from 60C to about 90C beyondwhich the incremental value started diminishing, and, (4) increase in mass flow rates producedhigher cooling power with decreased COP while decrease in mass flow rates of hot water producedlower cooling power with increased COP. This paper therefore recommends an adsorption/desorption time, heat and mass recovery time, inlet hot water temperature, and hot watermass flow rate of 780 s, 60 s, 83C, and 0.22 kg/s as appropriate to give the best chiller performancefor refrigeration.

      더보기

      참고문헌 (Reference)

      1 B. B Saha, "Two-stage nonregenerative silica gel water adsorption refrigeration cycle" 40 : 6-19, 2000

      2 F. Meunier, "Theoretical performances of solid adsorbent cascading cycles using the zeolite-water and active carbon-methanol pairs: Four case studies" 6 : 491-498, 1986

      3 Y. Liu, "The e®ect of operating conditions on the performance of zeolite/water adsorption cooling systems" 25 : 1403-1418, 2005

      4 K. Sumathy, "Technology development in the solar adsorption refrigeration systems" 29 : 301-327, 2003

      5 Y. Hamamoto, "Study on adsorption refrigeration cycle utilizing activated carbon ¯bers. Part 1. Adsorption characteristics" 29 : 305-314, 2006

      6 L. G. Gordeeva, "Selective water sorbents for multiple applications, 5. LiBr con¯ned in mesopores of silica gel: Sorption properties" 63 : 81-88, 1998

      7 Y. I. Aristov, "Selective water sorbents for multiple applications, 1. CaCl2 con¯ned in mesopores of silica gel: Sorption properties" 59 : 325-333, 1996

      8 G. Z. Yang, "Research on a compact adsorption room air conditioner" 47 : 2167-2177, 2006

      9 S. V. Shelton, "Ramp wave analysis of the solid/vapor heat pump" 112 : 69-79, 1990

      10 Y. Liu, "Pore structure of new composite adsorbent SiO2 xH2O yCaCl2 with high uptake of water from air" 46 : 551-559, 2003

      1 B. B Saha, "Two-stage nonregenerative silica gel water adsorption refrigeration cycle" 40 : 6-19, 2000

      2 F. Meunier, "Theoretical performances of solid adsorbent cascading cycles using the zeolite-water and active carbon-methanol pairs: Four case studies" 6 : 491-498, 1986

      3 Y. Liu, "The e®ect of operating conditions on the performance of zeolite/water adsorption cooling systems" 25 : 1403-1418, 2005

      4 K. Sumathy, "Technology development in the solar adsorption refrigeration systems" 29 : 301-327, 2003

      5 Y. Hamamoto, "Study on adsorption refrigeration cycle utilizing activated carbon ¯bers. Part 1. Adsorption characteristics" 29 : 305-314, 2006

      6 L. G. Gordeeva, "Selective water sorbents for multiple applications, 5. LiBr con¯ned in mesopores of silica gel: Sorption properties" 63 : 81-88, 1998

      7 Y. I. Aristov, "Selective water sorbents for multiple applications, 1. CaCl2 con¯ned in mesopores of silica gel: Sorption properties" 59 : 325-333, 1996

      8 G. Z. Yang, "Research on a compact adsorption room air conditioner" 47 : 2167-2177, 2006

      9 S. V. Shelton, "Ramp wave analysis of the solid/vapor heat pump" 112 : 69-79, 1990

      10 Y. Liu, "Pore structure of new composite adsorbent SiO2 xH2O yCaCl2 with high uptake of water from air" 46 : 551-559, 2003

      11 R. Z. Wang, "Performance improvement of adsorption cooling by heat and mass recovery operation" 24 : 602-611, 2001

      12 H. T. Chua, "Modeling the performance of two-bed, sillica gel-water adsorption chillers" 22 : 194-204, 1999

      13 A. Akahira, "Mass recovery adsorption refrigeration cycle — Improving cooling capacity" 27 : 225-234, 2004

      14 G. Restuccia, "Hydrophobic zeolite/methanol: Experiments on a lab scale refrigeration system with a thermally e±cient coated heat exchanger" 5 : 281-, 2003

      15 R. E. Critoph, "Forced convection adsorption cycles" 18 : 799-807, 1998

      16 Z. Xia, "Experimental study on improved two-bed silica gel–water adsorption chiller" 49 : 1469-1479, 2008

      17 L. X. Gong, "Experimental study on an adsorption chiller employing lithium chloride in silica gel and methanol" 35 : 1950-1957, 2012

      18 I. I. El-Sharkawy, "Experimental investigation on activated carbon–ethanol pair for solar powered adsorption cooling applications" 31 : 1407-1413, 2008

      19 X. L. Wang, "Experimental investigation of silica gel–water adsorption chillers with and without a passive heat recovery scheme" 28 : 756-765, 2005

      20 E. C. Boelman, "Experimental investigation of a silica gel–water adsorption refrigeration cycle — The in°uence of operating conditions on cooling output and COP" 101 : 358-366, 1995

      21 X. Q. Kong, "Experimental investigation of a micro-combined cooling, heating and power system driven by a gas engine" 28 : 977-987, 2005

      22 M. Z. I. KHAN, "EXPERIMENTAL STUDY ON A THREE-BED ADSORPTION CHILLER" 대한설비공학회 19 (19): 285-290, 2011

      23 J. K. KIPLAGAT, "ENHANCEMENT OF HEAT AND MASS TRANSFER IN SOLID GAS SORPTION SYSTEMS" 대한설비공학회 20 (20): 1-16, 2012

      24 L. X. Gong, "Design and performance prediction of a new generation adsorption chiller using composite adsorbent" 52 : 2345-2350, 2011

      25 W. S. Chang, "Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller" 29 : 2100-2105, 2009

      26 B. B. Saha, "Computer simulation of a silica gel-water adsorption refrigeration cycle- the in°uence of operating conditions on cooling output and COP" 101 : 348-357, 1995

      27 B. B. Saha, "Computational analysis of an advanced adsorption—refrigeration cycle" 20 : 983-994, 1995

      28 L. G. Gordeeva, "Composites `salt inside porous matrix' for absorption heat transformation:A current state-of-the-art and new trends" 7 : 288-302, 2012

      29 L. G. Gordeeva, "Composites \lithium halides in silica gel pores": Methanol sorption equilibrium" 112 : 254-261, 2008

      30 L. G. Gordeeva, "Composites \lithium halides in silica gel pores": Methanol sorption equilibrium" 112 : 254-261, 2008

      31 L. G. Gordeeva, "Composite sorbent of methanol \lithium chloride in mesoporous silica gel" for adsorption cooling machines: Performance and stability evaluation" 48 : 6197-6202, 2009

      32 M. Pons, "Adsorptive machines with advanced cycles for heat pumping or cooling applications:Cycles a adsorption pour pompes a chaleur ou machines frigor: Figues" 22 : 27-37, 1999

      33 R. Z. Wang, "Adsorption refrigeration — An e±cient way to make good use of waste heat and solar energy" 32 : 424-458, 2006

      34 R. Z. Wang, "Adsorption refrigeration research in Shanghai Jiao Tong University" 5 : 1-37, 2001

      35 Y. I. Aristov, "A family of new working materials for solid sorption air conditioning systems" 22 : 191-204, 2002

      36 H. S. BAO, "A REVIEW OF REACTANT SALTS FOR RESORPTION REFRIGERATION SYSTEMS" 대한설비공학회 18 (18): 165-180, 2010

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.56 0.56 0.48
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.4 0.34 0.535 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼