Artificial Ground Freezing (AGF) is a promising method for controlling seepage in permeable strata. However, AGF faces challenges, including difficulties in achieving a frozen barrier in high-flow conditions and concerns about cost-effectiveness. This...
Artificial Ground Freezing (AGF) is a promising method for controlling seepage in permeable strata. However, AGF faces challenges, including difficulties in achieving a frozen barrier in high-flow conditions and concerns about cost-effectiveness. This study optimizes freezing pipe placement in AGF using a simulated annealing algorithm and a coupled hydrothermal finite element model, focusing on AGF system responses under varying seepage velocities. The optimized layout significantly reduces freeze-ring formation time (by 2.5 days) and the overall freezing duration (by 12.5 days). Moreover, it substantially decreases the required frozen soil volume, facilitating drilling and excavation. Across different seepage velocities, the difference in freeze-ring formation time between the optimized and uniform layouts gradually increases with higher seepage velocity, reaching a maximum difference of 5.9 days. Finally, the relationship between freezing time and seepage velocity was quantitatively described using exponential functions. This study underscores the critical role of optimizing freezing pipe placement in AGF, providing a foundation for efficient and cost-effective geotechnical engineering practices.