<P>The operation of chemical vapor-deposited (CVD) graphene field-effect transistors (GFETs) is highly sensitive to environmental factors such as the substrate, polymer residues, ambient condition, and other species adsorbed on the graphene surf...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107543157
2015
-
SCOPUS,SCIE
학술저널
4013-4019(7쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>The operation of chemical vapor-deposited (CVD) graphene field-effect transistors (GFETs) is highly sensitive to environmental factors such as the substrate, polymer residues, ambient condition, and other species adsorbed on the graphene surf...
<P>The operation of chemical vapor-deposited (CVD) graphene field-effect transistors (GFETs) is highly sensitive to environmental factors such as the substrate, polymer residues, ambient condition, and other species adsorbed on the graphene surface due to their high defect density. As a result, CVD GFETs often exhibit a large hysteresis and time-dependent instability. These problems become a major roadblock in the systematic study of graphene devices. We report a facile process to alleviate these problems, which can be used to fabricate stable high performance CVD GFETs with symmetrical current-voltage (I-V) characteristics and an effective carrier mobility over 6000 cm(2) V(-1) s(-1). This process combined a few steps of processes in sequence including pre-annealing in a vacuum, depositing a passivation layer, and the final annealing in a vacuum, and eliminated 50% of charging sources primarily originating from water reduction reactions.</P>
Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system
Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres