Nitrogen (N)‐doped carbons are potential nonprecious metal catalysts to replace Pt for the oxygen reduction reaction (ORR). Pyridinic‐N‐C is believed to be the most active N group for catalyzing ORR. In this work, using zinc phthalocyanine as a ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=O120042830
Jin Luo ; Kangjun Wang ; Xing Hua ; Wang Wang ; Jun Li ; Shiming Zhang ; Shengli Chen
2019년
-
1613-6810
1613-6829
SCIE;SCOPUS
학술저널
n/a-n/a [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
Nitrogen (N)‐doped carbons are potential nonprecious metal catalysts to replace Pt for the oxygen reduction reaction (ORR). Pyridinic‐N‐C is believed to be the most active N group for catalyzing ORR. In this work, using zinc phthalocyanine as a ...
Nitrogen (N)‐doped carbons are potential nonprecious metal catalysts to replace Pt for the oxygen reduction reaction (ORR). Pyridinic‐N‐C is believed to be the most active N group for catalyzing ORR. In this work, using zinc phthalocyanine as a precursor effectively overcomes the serious loss of pyridinic‐N, which is commonly regarded as the biggest obstacle to catalytic performance enhancement upon adopting a second pyrolysis process, for the preparation of a 3D porous N‐doped carbon framework (NDCF). The results show only ≈14% loss in pyridinic‐N proportion in the Zn‐containing sample during the second pyrolysis process. In comparison, a loss of ≈72% pyridinic‐N occurs for the non‐Zn counterpart. The high pyridinic‐N proportion, the porous carbon framework produced upon NaCl removal, and the increased mesoporous defects in the second pyrolysis process make the as‐prepared catalyst an excellent electrocatalyst for ORR, exhibiting a half‐wave potential (E1/2 = 0.88 V) up to 33 mV superior to state‐of‐the‐art Pt/C and high four‐electron selectivity (n > 3.83) in alkaline solution, which is among the best ORR activities reported for N‐doped carbon catalysts. Furthermore, only ≈18 mV degradation in E1/2 occurs after an 8000 cycles' accelerating stability test, manifesting the outstanding stability of the as‐prepared catalyst.
3D nitrogen‐doped carbon frameworks are synthesized through a double pyrolytic process using NaCl crystallites as templates. The use of ZnPc as precursor in place of H2Pc can selectively protect the most active pyridinic‐N‐C in a derived ORR electrocatalyst that shows an improvement of ≈45 mV in half‐wave potential (E
1/2 = 0.88 V).
In‐Plane Isotropic/Anisotropic 2D van der Waals Heterostructures for Future Devices
Virus Detection: Volume‐Enhanced Raman Scattering Detection of Viruses (Small 11/2019)
Multifunctional van der Waals Broken‐Gap Heterojunction