RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      Wood Classification of Japanese Fagaceae using Partial Sample Area and Convolutional Neural Networks = Wood Classification of Japanese Fagaceae using Partial Sample Area and Convolutional Neural Networks

      한글로보기

      https://www.riss.kr/link?id=A107873854

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Wood identification is regularly performed by observing the wood anatomy, such as colour, texture, fibre direction, and other characteristics. The manual process, however, could be time consuming, especially when identification work is required at hig...

      Wood identification is regularly performed by observing the wood anatomy, such as colour, texture, fibre direction, and other characteristics. The manual process, however, could be time consuming, especially when identification work is required at high quantity. Considering this condition, a convolutional neural networks (CNN)-based program is applied to improve the image classification results. The research focuses on the algorithm accuracy and efficiency in dealing with the dataset limitations. For this, it is proposed to do the sample selection process or only take a small portion of the existing image. Still, it can be expected to represent the overall picture to maintain and improve the generalisation capabilities of the CNN method in the classification stages. The experiments yielded an incredible F1 score average up to 93.4% for medium sample area sizes (200 × 200 pixels) on each CNN architecture (VGG16, ResNet50, MobileNet, DenseNet121, and Xception based). Whereas DenseNet121-based architecture was found to be the best architecture in maintaining the generalisation of its model for each sample area size (100, 200, and 300 pixels). The experimental results showed that the proposed algorithm can be an accurate and reliable solution.

      더보기

      참고문헌 (Reference)

      1 전우석, "국내산 대나무 3종의 해부학적 특성" 한국목재공학회 46 (46): 29-37, 2018

      2 Chollet, F., "Xception: Deep Learning with Depthwise Separable Convolutions" 1251-1258, 2017

      3 Prislan, P., "Wood sample preparation for microscopic analysis" University of Ljubljana, Department of Wood Science and Technology 2014

      4 Sugiarto, B., "Wood identification based on histogram of oriented gradient (HOG) feature and support vector machine(SVM) classifier" 337-341, 2017

      5 양상윤, "Wood Species Classification Utilizing Ensembles of Convolutional Neural Networks Established by Near-Infrared Spectra and Images Acquired from Korean Softwood Lumber" 한국목재공학회 47 (47): 385-392, 2019

      6 Salma, S., "Wood Identification on Microscopic Image with Daubechies Wavelet Method and Local Binary Pattern" 23-27, 2018

      7 황성욱, "Wood Identification of Historical Architecture in Korea by Synchrotron X-ray Microtomography-Based Three-Dimensional Microstructural Imaging" 한국목재공학회 48 (48): 283-290, 2020

      8 Schoch, W., "Wood Anatomy of Central European Species" Swiss Federal Institute for Forest 2004

      9 Simonyan, K., "Very deep convolutional networks for large-scale image recognition"

      10 Sewak, M., "Practical Convolutional Neural Networks: Implement Advanced Deep Learning Models Using Python" Packt Publishing Ltd 2018

      1 전우석, "국내산 대나무 3종의 해부학적 특성" 한국목재공학회 46 (46): 29-37, 2018

      2 Chollet, F., "Xception: Deep Learning with Depthwise Separable Convolutions" 1251-1258, 2017

      3 Prislan, P., "Wood sample preparation for microscopic analysis" University of Ljubljana, Department of Wood Science and Technology 2014

      4 Sugiarto, B., "Wood identification based on histogram of oriented gradient (HOG) feature and support vector machine(SVM) classifier" 337-341, 2017

      5 양상윤, "Wood Species Classification Utilizing Ensembles of Convolutional Neural Networks Established by Near-Infrared Spectra and Images Acquired from Korean Softwood Lumber" 한국목재공학회 47 (47): 385-392, 2019

      6 Salma, S., "Wood Identification on Microscopic Image with Daubechies Wavelet Method and Local Binary Pattern" 23-27, 2018

      7 황성욱, "Wood Identification of Historical Architecture in Korea by Synchrotron X-ray Microtomography-Based Three-Dimensional Microstructural Imaging" 한국목재공학회 48 (48): 283-290, 2020

      8 Schoch, W., "Wood Anatomy of Central European Species" Swiss Federal Institute for Forest 2004

      9 Simonyan, K., "Very deep convolutional networks for large-scale image recognition"

      10 Sewak, M., "Practical Convolutional Neural Networks: Implement Advanced Deep Learning Models Using Python" Packt Publishing Ltd 2018

      11 권오경, "Performance Enhancement of Automatic Wood Classification of Korean Softwood by Ensembles of Convolutional Neural Networks" 한국목재공학회 47 (47): 265-276, 2019

      12 Fukushima, K., "Neocognitron : A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position" 36 : 193-202, 1980

      13 Howard, A. G., "Mobilenets : Efficient convolutional neural networks for mobile vision applications"

      14 Alvin Muhammad SAVERO, "Investigating the Anatomical and Physical-Mechanical Properties of the 8-Year-Old Superior Teakwood Planted in Muna Island, Indonesia" 한국목재공학회 48 (48): 618-630, 2020

      15 Géron, A, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" O’Reilly Media 2019

      16 Hadiwidjaja, M. L., "Developing wood identification system by local binary pattern and hough transform method" 1192 (1192): 012053-, 2019

      17 Huang, G., "Densely Connected Convolutional Networks" 4700-4708, 2017

      18 Marmanis, D., "Deep learning earth observation classification using ImageNet pretrained networks" 13 (13): 105-109, 2015

      19 He, K., "Deep Residual Learning for Image Recognition" 770-778, 2016

      20 Seth, W., "Deep Learning from Scratch" O’Reilly Media 2019

      21 Maggiori, E., "Convolutional neural networks for large-scale remote-sensing image classification" 55 (55): 645-657, 2016

      22 Yu, S., "Convolutional neural networks for hyperspectral image classification" 219 : 88-98, 2017

      23 전우석, "Comparison of Anatomical Characteristics for Wood Damaged by Oak Wilt and Sound Wood from Quercus mongolica" 한국목재공학회 48 (48): 807-819, 2020

      24 권오경, "Automatic Wood Species Identification of Korean Softwood Based on Convolutional Neural Networks" 한국목재공학회 45 (45): 797-808, 2017

      25 Kobayashi, K., "Anatomical features of Fagaceae wood statistically extracted by computer vision approaches:Some relationships with evolution" 14 (14): e0220762-, 2019

      26 Levi, G., "Age and Gender Classification Using Convolutional Neural Networks" 34-42, 2015

      27 Hussain, M., "Advances in Computational Intelligence Systems" 191-202, 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.5 0.5 0.5
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.48 0.45 0.457 0.13
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼