RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      RCM 자료와 기계학습을 이용한 북극권 카라-바렌츠 해역의 해빙면적비 예측 = Prediction of Arctic Sea Ice Concentration of Kara-Barents Seas Using RCM Data with Machine Learning

      한글로보기

      https://www.riss.kr/link?id=A104986361

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Arctic sea ice as an indicator of climate change plays an important role in controlling global climate system. Thus, accurate observation and prediction of Sea Ice Concentration (SIC) is essential for understanding global climate change. In this study...

      Arctic sea ice as an indicator of climate change plays an important role in controlling global climate system. Thus, accurate observation and prediction of Sea Ice Concentration (SIC) is essential for understanding global climate change. In this study, we aim to improve the prediction accuracy of SIC by using machine learning and Regional Climate Model (RCM) data for a more robust method and a higher spatial resolution. Using the CORDEX RCM and NASA SIC data between January 1981 and December 2015, we developed three statistical models using Multiple Linear Regression (MLR), Support Vector Machine (SVM), and Deep Neural Network (DNN) which can deal with the non-linearity problem, respectively. The DNN model showed the best performance among the three models with the significant correlation between the predictive and observed SIC (r=0.811, p-value < 0.01)and the Root Mean Square Error (RMSE) of 0.258. With deeper considerations of the polar fronts and the characteristics of ocean current and tide, the DNN model can be applied for near future prediction of Arctic sea ice changes.

      더보기

      참고문헌 (Reference)

      1 "http://nsidc.org"

      2 Smedsrud, L. H., "The role of the Barents Sea in the Arctic climate system" 51 (51): 415-449, 2013

      3 Pfirman, S. L., "The northern Barents Sea: water mass distribution and modification" 77-94, 1994

      4 Ahn, J., "Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979-2012" 6 (6): 5520-5540, 2014

      5 Blanchard-Wrigglesworth, E., "Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations" 24 (24): 231-250, 2011

      6 Kim, J. H., "Mid-long term prediction of Arctic Sea Ice Concentration using statistical method" 142-143, 2017

      7 Tivy, A., "Long-range prediction of the shipping season in Hudson Bay: A statistical approach" 22 (22): 1063-1075, 2007

      8 Lubinski, D. J., "Freshwater Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: foraminifera and stable isotopes" 20 (20): 1851-1879, 2001

      9 Sorteberg, A., "Atmospheric forcing on the Barents Sea winter ice extent" 19 (19): 4772-4784, 2006

      10 Schauer, U., "Atlantic water flow through the Barents and Kara Seas" 49 (49): 2281-2298, 2002

      1 "http://nsidc.org"

      2 Smedsrud, L. H., "The role of the Barents Sea in the Arctic climate system" 51 (51): 415-449, 2013

      3 Pfirman, S. L., "The northern Barents Sea: water mass distribution and modification" 77-94, 1994

      4 Ahn, J., "Statistical Modeling of Sea Ice Concentration Using Satellite Imagery and Climate Reanalysis Data in the Barents and Kara Seas, 1979-2012" 6 (6): 5520-5540, 2014

      5 Blanchard-Wrigglesworth, E., "Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations" 24 (24): 231-250, 2011

      6 Kim, J. H., "Mid-long term prediction of Arctic Sea Ice Concentration using statistical method" 142-143, 2017

      7 Tivy, A., "Long-range prediction of the shipping season in Hudson Bay: A statistical approach" 22 (22): 1063-1075, 2007

      8 Lubinski, D. J., "Freshwater Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: foraminifera and stable isotopes" 20 (20): 1851-1879, 2001

      9 Sorteberg, A., "Atmospheric forcing on the Barents Sea winter ice extent" 19 (19): 4772-4784, 2006

      10 Schauer, U., "Atlantic water flow through the Barents and Kara Seas" 49 (49): 2281-2298, 2002

      11 Stroeve, J., "Arctic sea-ice variability revisited" 48 (48): 71-81, 2008

      12 Deser, C., "Arctic sea ice variability in the context of recent atmospheric circulation trends" 13 (13): 617-633, 2000

      13 NSIDC, "Arctic Sea Ice News & Analysis"

      14 Park, D. S., "Analysis of factors of Arctic sea ice decline in Winter" 543-544, 2015

      15 Sheldon D. Drobot, "A long-range forecast of Arctic summer sea-ice minimum extent" Wiley-Blackwell 33 (33): 2006

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2011-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.63 0.63 0.67
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.71 0.67 0.962 0.3
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼