RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS

      Multiprocessor Scheduling of a Multi-Mode Dataflow Graph Considering Mode Transition Delay

      한글로보기

      https://www.riss.kr/link?id=A107501199

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>The Synchronous Data Flow (SDF) model is widely used for specifying signal processing or streaming applications. Since modern embedded applications become more complex with dynamic behavior changes at runtime, several extensions of the SDF model have been proposed to specify the dynamic behavior changes while preserving static analyzability of the SDF model. They assume that an application has a finite number of behaviors (or modes), and each behavior (mode) is represented by an SDF graph. They are classified as multi-mode dataflow models in this article. While there exist several scheduling techniques for multi-mode dataflow models, no one allows task migration between modes. By observing that the resource requirement can be additionally reduced if task migration is allowed, we propose a multiprocessor scheduling technique of a multi-mode dataflow graph considering task migration between modes. Based on a genetic algorithm, the proposed technique schedules all SDF graphs in all modes simultaneously to minimize the resource requirement. To satisfy the throughput constraint, the proposed technique calculates the actual throughput requirement of eachmode and the output buffer size for tolerating throughput jitter. We compare the proposed technique with a method that analyzes SDF graphs in each execution mode separately, a method that does not allow taskmigration, and amethod that does not allowmode-overlapped schedule for synthetic examples and five real applications: H. 264 decoder, lane detection, vocoder, MP3 decoder, and printer pipeline.</P>
      번역하기

      <P>The Synchronous Data Flow (SDF) model is widely used for specifying signal processing or streaming applications. Since modern embedded applications become more complex with dynamic behavior changes at runtime, several extensions of the SDF mo...

      <P>The Synchronous Data Flow (SDF) model is widely used for specifying signal processing or streaming applications. Since modern embedded applications become more complex with dynamic behavior changes at runtime, several extensions of the SDF model have been proposed to specify the dynamic behavior changes while preserving static analyzability of the SDF model. They assume that an application has a finite number of behaviors (or modes), and each behavior (mode) is represented by an SDF graph. They are classified as multi-mode dataflow models in this article. While there exist several scheduling techniques for multi-mode dataflow models, no one allows task migration between modes. By observing that the resource requirement can be additionally reduced if task migration is allowed, we propose a multiprocessor scheduling technique of a multi-mode dataflow graph considering task migration between modes. Based on a genetic algorithm, the proposed technique schedules all SDF graphs in all modes simultaneously to minimize the resource requirement. To satisfy the throughput constraint, the proposed technique calculates the actual throughput requirement of eachmode and the output buffer size for tolerating throughput jitter. We compare the proposed technique with a method that analyzes SDF graphs in each execution mode separately, a method that does not allow taskmigration, and amethod that does not allowmode-overlapped schedule for synthetic examples and five real applications: H. 264 decoder, lane detection, vocoder, MP3 decoder, and printer pipeline.</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼