RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Bayesian structural equation modeling for coastal management: The case of the Saemangeum coast of Korea for water quality improvements

      한글로보기

      https://www.riss.kr/link?id=A107436224

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>The data-driven paradigm is widely used in ocean science and includes the statistical modeling of various phenomena in coastal marine environments and data assimilation in numerical models. One of the most important challenges in the data-driven paradigm is finding the model that best approximates the underlying mechanism of a phenomenon with measurement data. In this paper, we propose a Bayesian approach to modeling coastal marine environments using ocean observational data, and we apply it to the Saemangeum coast. There are two main advantages to the Bayesian method: domain knowledge can be encoded to prior probability, and Markov-chain Monte Carlo simulation can be used in model estimation and inference. We apply the method to estimate model parameters and predict coastal water quality and sea current for maintaining optimal coastal water quality. The threshold quantity of sea current is computed to ensure sustainable coastal development. One of the interesting results we have obtained is a flat plateau relationship between the sea current for water exchange and the level of improvement of coastal water quality. This means that coastal water quality is not always being improved, even if the amount of water exchange is increased. The computed results are in good agreement with oceanographic theory, while showing a valid difference compared to the results using the frequentist approach and probabilistic inference using the probabilistic graphical model. These results will be helpful in coastal water quality management, ultimately contributing to sustainable coastal development.</P>
      번역하기

      <P><B>Abstract</B></P> <P>The data-driven paradigm is widely used in ocean science and includes the statistical modeling of various phenomena in coastal marine environments and data assimilation in numerical models. One ...

      <P><B>Abstract</B></P> <P>The data-driven paradigm is widely used in ocean science and includes the statistical modeling of various phenomena in coastal marine environments and data assimilation in numerical models. One of the most important challenges in the data-driven paradigm is finding the model that best approximates the underlying mechanism of a phenomenon with measurement data. In this paper, we propose a Bayesian approach to modeling coastal marine environments using ocean observational data, and we apply it to the Saemangeum coast. There are two main advantages to the Bayesian method: domain knowledge can be encoded to prior probability, and Markov-chain Monte Carlo simulation can be used in model estimation and inference. We apply the method to estimate model parameters and predict coastal water quality and sea current for maintaining optimal coastal water quality. The threshold quantity of sea current is computed to ensure sustainable coastal development. One of the interesting results we have obtained is a flat plateau relationship between the sea current for water exchange and the level of improvement of coastal water quality. This means that coastal water quality is not always being improved, even if the amount of water exchange is increased. The computed results are in good agreement with oceanographic theory, while showing a valid difference compared to the results using the frequentist approach and probabilistic inference using the probabilistic graphical model. These results will be helpful in coastal water quality management, ultimately contributing to sustainable coastal development.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼