RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Time Delay Compensation for Hardware-in-the-loop Simulation of a Turbojet Engine Fuel Control Unit Using Neural NARX Smith Predictor

      한글로보기

      https://www.riss.kr/link?id=A107866471

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Hardware-in-the-loop (HIL) simulation is an effective technique that is used for development and testing of control systems while some of the control loop components are simulated in a proper environment and the other components are real hardware. In ...

      Hardware-in-the-loop (HIL) simulation is an effective technique that is used for development and testing of control systems while some of the control loop components are simulated in a proper environment and the other components are real hardware. In a conventional HIL simulation, the hardware is an electronic control unit which electronic control signals are communicated between the hardware and the software. But, HIL simulation of a mechanical component requires additional transfer systems to connect the software and hardware. The HIL simulation can achieve unstable behavior or inaccurate results due to unwanted time-delay dynamic of the transfer system. This paper presents the use of Smith predictor for time-delay compensation of transfer system in the HIL simulation of an electro-hydraulic fuel control unit (FCU) for a turbojet engine. A nonlinear auto regressive with exogenous input (NARX) neural network model is used for modeling and predicting the FCU behavior. The neural model is trained by Levenberg-Marquardt algorithm and the training and validation sets are generated using the amplitude modulated pseudo random binary sequence (APRBS). The consistency of the experimental real-time simulation and off-line simulation shows the applicability of the presented method for mitigating the effect of unwanted dynamic of the transfer system in the HIL simulation

      더보기

      참고문헌 (Reference)

      1 M. Nasiri, "Time-delay compensation for actuator-based hardware-in-the-loop testing of a jet engine fuel control unit" 226 (226): 1371-1380, 2012

      2 H. Su, "Semiglobal output consensus for discrete-time switching networked systems subject to input saturation and external disturbances" 49 (49): 3934-3945, 2018

      3 F. Huerta, "Real-time power-hardware-in-the-loop implementation of variablespeed wind turbines" 64 (64): 1893-1904, 2016

      4 M. Montazeri-Gh, "Real-time multi-rate HIL simulation platform for evaluation of a jet engine fuel controller" 19 (19): 996-1006, 2011

      5 Y. Cao, "Observer-based consensus tracking of nonlinear agents in hybrid varying directed topology" 47 (47): 2212-2222, 2016

      6 C. Chen, "Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme" 38 (38): 1237-1255, 2009

      7 Jian-An Wang, "Improved Results on Stability Analysis for Delayed Neural Network" 제어·로봇·시스템학회 18 (18): 1853-1862, 2020

      8 R. Isermann, "Hardware-in-theloop simulation for the design and testing of engine-control systems" 7 : 643-653, 1999

      9 T. H. Bradley, "Hardware-in-the-loop testing of a fuel cell aircraft powerplant" 25 (25): 1336-1344, 2009

      10 M. Karpenko, "Hardware-in-the-loop simulator for research on fault tolerant control of electrohydraulic actuators in a flight control application" 19 (19): 1067-1077, 2009

      1 M. Nasiri, "Time-delay compensation for actuator-based hardware-in-the-loop testing of a jet engine fuel control unit" 226 (226): 1371-1380, 2012

      2 H. Su, "Semiglobal output consensus for discrete-time switching networked systems subject to input saturation and external disturbances" 49 (49): 3934-3945, 2018

      3 F. Huerta, "Real-time power-hardware-in-the-loop implementation of variablespeed wind turbines" 64 (64): 1893-1904, 2016

      4 M. Montazeri-Gh, "Real-time multi-rate HIL simulation platform for evaluation of a jet engine fuel controller" 19 (19): 996-1006, 2011

      5 Y. Cao, "Observer-based consensus tracking of nonlinear agents in hybrid varying directed topology" 47 (47): 2212-2222, 2016

      6 C. Chen, "Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme" 38 (38): 1237-1255, 2009

      7 Jian-An Wang, "Improved Results on Stability Analysis for Delayed Neural Network" 제어·로봇·시스템학회 18 (18): 1853-1862, 2020

      8 R. Isermann, "Hardware-in-theloop simulation for the design and testing of engine-control systems" 7 : 643-653, 1999

      9 T. H. Bradley, "Hardware-in-the-loop testing of a fuel cell aircraft powerplant" 25 (25): 1336-1344, 2009

      10 M. Karpenko, "Hardware-in-the-loop simulator for research on fault tolerant control of electrohydraulic actuators in a flight control application" 19 (19): 1067-1077, 2009

      11 M. Montazeri-Gh, "Hardware-in-the-loop simulation for testing of electro-hydraulic fuel control unit in a jet engine application" 89 (89): 225-233, 2013

      12 X. Guo, "FPGAbased hardware-in-the-loop real-time simulation implementation for high-speed train electrical traction system" 14 (14): 850-858, 2020

      13 P. J. Gawthrop, "Emulator-based control for actuator-based hardware-inthe-loop testing" 16 (16): 897-908, 2008

      14 A. Salehi, "Design and HIL-based verification of the fuel control unit for a gas turbine engine" 0954410020910593-, 2020

      15 M. Ahmadizadeh, "Compensation of actuator delay and dynamics for realtime hybrid structural simulation" 37 (37): 21-42, 2008

      16 P. J. Gawthrop, "Bond graphbased control and substructuring" 17 (17): 211-227, 2009

      17 C. Chen, "Analysis of actuator delay compensation methods for real-time testing" 31 (31): 2643-2655, 2009

      18 M. I. Wallace, "An adaptive polynomial based forward prediction algorithm for multiactuator real-time dynamic substructuring" 461 (461): 3807-3826, 2005

      19 M. Montazeri-Gh, "Actuator-based hardware-in-the-loop testing of a jet engine fuel control unit in flight conditions" 21 (21): 65-77, 2011

      20 T. Horiuchi, "A new method for compensating actuator delay in real-time hybrid experiment" 359 : 1893-1909, 2001

      21 N. R. Gans, "A hardware in the loop simulation platform for vision-based control of unmanned air vehicles" 19 (19): 1043-1056, 2009

      22 정슬, "A Neural Network Technique of Compensating for an Inertia Model Error in a Time-delayed Controller for Robot Manipulators" 제어·로봇·시스템학회 18 (18): 1863-1871, 2020

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼