RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Drone Detection and Tracking using Deep Convolutional Neural Networks from Real-time CCTV Footage

      한글로보기

      https://www.riss.kr/link?id=A109215932

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Drones are flying objects that may be controlled remotely or programmed to do a wide range of tasks, including aerial photography, videography, surveys, crop and animal monitoring, search and rescue missions, package delivery, and military operations....

      Drones are flying objects that may be controlled remotely or programmed to do a wide range of tasks, including aerial photography, videography, surveys, crop and animal monitoring, search and rescue missions, package delivery, and military operations. Unrestrained use, however, can pose a significant threat to safety, privacy, and security through eavesdropping, flying close to prohibited locations, interfering with public events, and delivering illicit items. Hence, real-time drone detection and tracking are indispensable and appropriate measures. This study developed real-time drone detection and tracking using the most efficient deep-learning approaches. The models were fine-tuned first to suit the required purpose and yield the desired outcome. The performance of the developed system was better than that of earlier endeavors in terms of accuracy and loss. Of the seven fined-tuned models, the Xception model constantly rendered the maximum accuracy with negligible loss. The model outperformed other state-of-the-art architectures, exhibiting an accuracy and loss of 99.18% and 3.83, respectively.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼