RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Engineering analysis of multienzyme cascade reactions for 3ʹ‐sialyllactose synthesis

      한글로보기

      https://www.riss.kr/link?id=O107941776

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Sialo‐oligosaccharides are important products of emerging biotechnology for complex carbohydrates as nutritional ingredients. Cascade bio‐catalysis is central to the development of sialo‐oligosaccharide production systems, based on isolated enzymes or whole cells. Multienzyme transformations have been established for sialo‐oligosaccharide synthesis from expedient substrates, but systematic engineering analysis for the optimization of such transformations is lacking. Here, we show a mathematical modeling‐guided approach to 3ʹ‐sialyllactose (3SL) synthesis from N‐acetyl‐
      d‐neuraminic acid (Neu5Ac) and lactose in the presence of cytidine 5ʹ‐triphosphate, via the reactions of cytidine 5ʹ‐monophosphate‐Neu5Ac synthetase and α2,3‐sialyltransferase. The Neu5Ac was synthesized in situ from N‐acetyl‐
      d‐mannosamine using the reversible reaction with pyruvate by Neu5Ac lyase or the effectively irreversible reaction with phosphoenolpyruvate by Neu5Ac synthase. We show through comprehensive time‐course study by experiment and modeling that, due to kinetic rather than thermodynamic advantages of the synthase reaction, the 3SL yield was increased (up to 75%; 10.4 g/L) and the initial productivity doubled (15 g/L/h), compared with synthesis based on the lyase reaction. We further show model‐based optimization to minimize the total loading of protein (saving: up to 43%) while maintaining a suitable ratio of the individual enzyme activities to achieve 3SL target yield (61%–75%; 7–10 g/L) and overall productivity (3–5 g/L/h). Collectively, our results reveal the principal factors of enzyme cascade efficiency for 3SL synthesis and highlight the important role of engineering analysis to make multienzyme‐catalyzed transformations fit for oligosaccharide production.
      Sialo‐oligosaccharides are important carbohydrate products and multienzyme transformations enable their production. Here, the authors developed a modeling‐guided approach for engineering analysis and optimization of 3'‐sialyllactose (3SL) synthesis. Intermediary N‐acetyl‐D‐neuraminic acid (Neu5Ac) was obtained from N‐acetyl‐D‐mannose (ManNAc) with pyruvate (PYR) or phosphoenolpyruvate (PEP) using lyase (NAL) or synthase (SiaC), respectively. Neu5Ac was activated by synthetase (CSS) and transferred to lactose catalyzed by a2,3‐sialyltransferase (PdST). Guided by the model, the total enzyme loading was minimized, while retaining target yield at high productivity.
      번역하기

      Sialo‐oligosaccharides are important products of emerging biotechnology for complex carbohydrates as nutritional ingredients. Cascade bio‐catalysis is central to the development of sialo‐oligosaccharide production systems, based on isolated enzy...

      Sialo‐oligosaccharides are important products of emerging biotechnology for complex carbohydrates as nutritional ingredients. Cascade bio‐catalysis is central to the development of sialo‐oligosaccharide production systems, based on isolated enzymes or whole cells. Multienzyme transformations have been established for sialo‐oligosaccharide synthesis from expedient substrates, but systematic engineering analysis for the optimization of such transformations is lacking. Here, we show a mathematical modeling‐guided approach to 3ʹ‐sialyllactose (3SL) synthesis from N‐acetyl‐
      d‐neuraminic acid (Neu5Ac) and lactose in the presence of cytidine 5ʹ‐triphosphate, via the reactions of cytidine 5ʹ‐monophosphate‐Neu5Ac synthetase and α2,3‐sialyltransferase. The Neu5Ac was synthesized in situ from N‐acetyl‐
      d‐mannosamine using the reversible reaction with pyruvate by Neu5Ac lyase or the effectively irreversible reaction with phosphoenolpyruvate by Neu5Ac synthase. We show through comprehensive time‐course study by experiment and modeling that, due to kinetic rather than thermodynamic advantages of the synthase reaction, the 3SL yield was increased (up to 75%; 10.4 g/L) and the initial productivity doubled (15 g/L/h), compared with synthesis based on the lyase reaction. We further show model‐based optimization to minimize the total loading of protein (saving: up to 43%) while maintaining a suitable ratio of the individual enzyme activities to achieve 3SL target yield (61%–75%; 7–10 g/L) and overall productivity (3–5 g/L/h). Collectively, our results reveal the principal factors of enzyme cascade efficiency for 3SL synthesis and highlight the important role of engineering analysis to make multienzyme‐catalyzed transformations fit for oligosaccharide production.
      Sialo‐oligosaccharides are important carbohydrate products and multienzyme transformations enable their production. Here, the authors developed a modeling‐guided approach for engineering analysis and optimization of 3'‐sialyllactose (3SL) synthesis. Intermediary N‐acetyl‐D‐neuraminic acid (Neu5Ac) was obtained from N‐acetyl‐D‐mannose (ManNAc) with pyruvate (PYR) or phosphoenolpyruvate (PEP) using lyase (NAL) or synthase (SiaC), respectively. Neu5Ac was activated by synthetase (CSS) and transferred to lactose catalyzed by a2,3‐sialyltransferase (PdST). Guided by the model, the total enzyme loading was minimized, while retaining target yield at high productivity.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼