RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Hydrodynamic cavitation characteristics of an orifice system and its effects on CRUD-like SiC deposition

      한글로보기

      https://www.riss.kr/link?id=A107492767

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>In a nuclear power plant, chalk river unidentified deposit (CRUD) is known as a deposit that is composed of corrosion and oxidation materials. It has a porous structure, which combines with boron that is injected into the coolant for controlling power levels. The buildup of corrosion products on the fuel cladding surface has proven to be particularly significant for both BWRs and PWRs. The high temperature of the cladding surface attracts impurities and chemical additives in the reactor coolant that deposit on the fuel rod surface in a process. The deposits on a fuel rod, known as CRUD, can be tenacious, insulative compounds capable of increasing the local clad temperature and accelerating clad corrosion—sometimes to the point of fuel failure.</P> <P>The deposition of CRUD on fuel cladding surfaces causes uneven heating of the reactor core. The situation is exacerbated by boron, which is added to the coolant to control power levels. However, boron becomes concentrated and is deposited within thick CRUD deposits. Ultrasonic mechanisms were developed but they have limitations for decontamination. In this experiment, a decontamination test was conducted using a sample sheet that was composed of SiC/water nanofluids. In addition, it was exposed to swirl flow and common flow for checking enhanced cavitation. It is measured by a pressure film, as shock pressure is associated with cavitation number. As a pressure film is wetted easily in water, it was injected into a holder. In the experiment, the maximum shock pressure was obtained during swirl flow at a low cavitation number. This indicates that pressure was concentrated on the pressure film. Consequently, cavitation can get rid of CRUD layers partially.</P> <P><B>Highlights</B></P> <P> <UL> <LI> CRUD-like SiC deposition was prepared for examining the erosion test in the cavitation field. </LI> <LI> We investigated the comparison between swirl flow and common flow on cavitation. </LI> <LI> Magnitude of shock pressure was investigated at low cavitation number. </LI> </UL> </P>
      번역하기

      <P><B>Abstract</B></P> <P>In a nuclear power plant, chalk river unidentified deposit (CRUD) is known as a deposit that is composed of corrosion and oxidation materials. It has a porous structure, which combines with boro...

      <P><B>Abstract</B></P> <P>In a nuclear power plant, chalk river unidentified deposit (CRUD) is known as a deposit that is composed of corrosion and oxidation materials. It has a porous structure, which combines with boron that is injected into the coolant for controlling power levels. The buildup of corrosion products on the fuel cladding surface has proven to be particularly significant for both BWRs and PWRs. The high temperature of the cladding surface attracts impurities and chemical additives in the reactor coolant that deposit on the fuel rod surface in a process. The deposits on a fuel rod, known as CRUD, can be tenacious, insulative compounds capable of increasing the local clad temperature and accelerating clad corrosion—sometimes to the point of fuel failure.</P> <P>The deposition of CRUD on fuel cladding surfaces causes uneven heating of the reactor core. The situation is exacerbated by boron, which is added to the coolant to control power levels. However, boron becomes concentrated and is deposited within thick CRUD deposits. Ultrasonic mechanisms were developed but they have limitations for decontamination. In this experiment, a decontamination test was conducted using a sample sheet that was composed of SiC/water nanofluids. In addition, it was exposed to swirl flow and common flow for checking enhanced cavitation. It is measured by a pressure film, as shock pressure is associated with cavitation number. As a pressure film is wetted easily in water, it was injected into a holder. In the experiment, the maximum shock pressure was obtained during swirl flow at a low cavitation number. This indicates that pressure was concentrated on the pressure film. Consequently, cavitation can get rid of CRUD layers partially.</P> <P><B>Highlights</B></P> <P> <UL> <LI> CRUD-like SiC deposition was prepared for examining the erosion test in the cavitation field. </LI> <LI> We investigated the comparison between swirl flow and common flow on cavitation. </LI> <LI> Magnitude of shock pressure was investigated at low cavitation number. </LI> </UL> </P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼