RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Fractal Based Method on Hardware Acceleration for Natural Environments

      한글로보기

      https://www.riss.kr/link?id=A99873316

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Natural scenes from the real world are highly complex, such that the modeling and rendering of natural shapes, like mountains, trees and clouds, are very difficult and time consuming and require a huge amount of memory. Intuitively, the critical chara...

      Natural scenes from the real world are highly complex, such that the modeling and rendering of natural shapes, like mountains, trees and clouds, are very difficult and time consuming and require a huge amount of memory. Intuitively, the critical characteristics of natural scenes are their selfsimilarity properties. Motivated by the self-similarity feature of the natural scenes that surround us, we present a hardware accelerated fractal based rendering method for natural environments. To illustrate the problem that classical geometry has in dealing with natural objects, we considered the basic fractal example as the Mandelbrot set which is a 2D structure. We examined the serial algorithm of this set and devised a parallel algorithm for implementation on a massive parallel graphics processing unit (GPU) using the computer unified device architecture (CUDA) programming model. We also considered the modeling of 3D fractals such as terrains and evaluated its performance both in terms of execution time and hardware acceleration. Performance is evaluated in terms of execution time and it was observed that a parallel implementation of the method on a GeForce GTX 650 GPU is on average 2X times faster than its sequential implementation. The running behavior of the system at various system states is also evaluated to strongly support our approach.

      더보기

      목차 (Table of Contents)

      • Abstract
      • I. INTRODUCTION
      • II. RELATED WORKS
      • III. MANDELBROT SET
      • IV. TERRAIN RENDERING
      • Abstract
      • I. INTRODUCTION
      • II. RELATED WORKS
      • III. MANDELBROT SET
      • IV. TERRAIN RENDERING
      • V. RESULTS ANALYSIS
      • VI. CONCLUSION
      • ACKNOWLEDGMENT
      • REFERENCES
      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼