RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      매립지 메탄 및 악취 배출 저감을 위한 바이오커버 및 바이오필터의 현장적용 평가 연구

      한글로보기

      https://www.riss.kr/link?id=A103336425

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot re...

      In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover- 1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.

      더보기

      참고문헌 (Reference)

      1 문경은, "메탄의 생물학적 산화에 미치는 아민계 악취 화합물의 영향" 한국냄새환경학회 13 (13): 336-341, 2014

      2 류희욱, "메탄, 벤젠 및 톨루엔 제거용 바이오커버의 세균 군집 특성" 한국미생물·생명공학회 40 (40): 76-81, 2012

      3 박찬진, "매립지의 메탄가스 자원화와 악취 특성" 한국냄새환경학회 11 (11): 203-208, 2012

      4 조경숙, "매립지의 메탄 배출 저감을 위한 생물공학기술" 한국미생물·생명공학회 37 (37): 293-305, 2009

      5 Park, S., "The effect of various environmental and design parameters on methane oxidation in a model biofilter" 20 (20): 434-444, 2002

      6 De Visscher, A., "Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors" 33 (33): 231-237, 2001

      7 Ministry of Environment, "Report for national waste generation and treatment status"

      8 Gebert, J., "Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane" 26 (26): 399-407, 2006

      9 Dever, S. A., "Passive drainage and biofiltration of landfill gas : Results of Australian field trial" 31 (31): 1029-1048, 2011

      10 Bogner, J., "Modeling landfill methane emissions from biocovers: a combined theoretical-empirical approach" CISA, University of Cagliari 2005

      1 문경은, "메탄의 생물학적 산화에 미치는 아민계 악취 화합물의 영향" 한국냄새환경학회 13 (13): 336-341, 2014

      2 류희욱, "메탄, 벤젠 및 톨루엔 제거용 바이오커버의 세균 군집 특성" 한국미생물·생명공학회 40 (40): 76-81, 2012

      3 박찬진, "매립지의 메탄가스 자원화와 악취 특성" 한국냄새환경학회 11 (11): 203-208, 2012

      4 조경숙, "매립지의 메탄 배출 저감을 위한 생물공학기술" 한국미생물·생명공학회 37 (37): 293-305, 2009

      5 Park, S., "The effect of various environmental and design parameters on methane oxidation in a model biofilter" 20 (20): 434-444, 2002

      6 De Visscher, A., "Short-term kinetic response of enhanced methane oxidation in landfill cover soils to environmental factors" 33 (33): 231-237, 2001

      7 Ministry of Environment, "Report for national waste generation and treatment status"

      8 Gebert, J., "Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane" 26 (26): 399-407, 2006

      9 Dever, S. A., "Passive drainage and biofiltration of landfill gas : Results of Australian field trial" 31 (31): 1029-1048, 2011

      10 Bogner, J., "Modeling landfill methane emissions from biocovers: a combined theoretical-empirical approach" CISA, University of Cagliari 2005

      11 Scheutz, C., "Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions" 27 (27): 409-455, 2009

      12 Hanson, R. S., "Methanotrophic bacteria" 60 (60): 439-471, 1996

      13 Visvanathan, C., "Methanotrophic activities in tropical landfill cover soils: effect of temperature, moisture content and methane concentration" 17 (17): 313-323, 1999

      14 Powelson, D. K., "Methane oxidation in water-spreading and compost biofilters" 24 (24): 528-536, 2006

      15 Einola, J., "Methane oxidation at a surface-sealed boreal landfill" 29 (29): 2105-2120, 2009

      16 Nisbet, E. G., "Methane on the rise-again" 343 (343): 493-495, 2014

      17 Qingxian, G., "Methane emission from municipal solid waste treatments in China" 3 : 70-74, 2007

      18 Environmental Protection Agency, "Methane and Nitrous Oxide Emissions From Natural Sources" U.S. Environmental Protection Agency 2010

      19 Mohammed F.M. Abushammala, "Methane Oxidation in Landfill Cover Soils: A Review" 한국대기환경학회 8 (8): 1-14, 2014

      20 Sadasivam, B. Y., "Landfill methane oxidation in soil and bio-based covers : A review" 13 (13): 79-107, 2014

      21 He, P., "Interaction and independence on methane oxidation of landfill cover soil among three impact factors : water, oxygen and ammonium" 5 (5): 175-185, 2011

      22 Pratt, C., "In vitro methane removal by volcanic pumice soil biofilter columns over one year" 41 (41): 80-87, 2012

      23 Intergovernmental Panel on Climate Change, "IPCC Guidelines for National Greenhouse Gas Inventories"

      24 Castro, M. S., "Factors controlling atmospheric methane consumption by temperate forest soils" 9 (9): 1-10, 1995

      25 Roncato, C. D. L., "Evaluation of methane oxidation efficiency of two biocovers : field and laboratory results" 138 (138): 164-173, 2011

      26 Kormi, T., "Estimation of fugitive landfill methane emissions using surface emission monitoring and Genetic Algorithms optimization" Waste Management 2016

      27 Nikiema, J., "Elimination of methane generated from landfills by biofiltration : a review" 6 (6): 261-284, 2007

      28 Bogner J. E., "Effectiveness of florida landfill biocover for reduction of CH4 and NMHC emissions" 44 (44): 1197-1203, 2010

      29 Hrad, M., "Design of top covers supporting aerobic in situ stabilization of old landfills-an experimental simulation in lysimeters" 32 (32): 2324-2335, 2012

      30 Ritzkowski, M., "Controlling greenhouse gas emissions through landfill in situ aeration" 1 (1): 281-288, 2007

      31 Intergovernmental Panel on Climate Change, "Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change" 1535-, 1535

      32 Pratt, C., "CH4/CO2 ratios indicate highly efficient methane oxidation by a pumice landfill cover-soil" 33 (33): 412-419, 2013

      33 Scheutz, C., "Biodegradation of methane and halocarbons in simulated landfill biocover systems containing compost materials" 38 (38): 1363-1371, 2009

      34 Pawlowska, M., "Biochemical reduction of methane emissions from landfills" 23 (23): 666-672, 2006

      35 Scheutz, C., "Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill" 28 (28): 1892-1908, 2008

      36 Humer, M., "Alternative approach to the elimination of greenhouse gases from old landfills" 17 (17): 443-452, 1999

      37 Son, E. S., "A study on methane emission estimation from the landfill by inverse modeling" Korean Society of Odor Research and Engineering 2012

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2014-03-31 학술지명변경 한글명 : 한국냄새환경학회지 -> 실내환경 및 냄새 학회지
      외국어명 : Journal of Korean Society of Odor Research and Engineering -> Journal of Odor and Indoor Environment
      KCI등재후보
      2013-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2012-12-24 학술지명변경 외국어명 : Korean Journal of Odor Research and Engineering -> Journal of Korean Society of Odor Research and Engineering KCI등재후보
      2012-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2011-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2010-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2007-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.45 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.42 0.554 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼