RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      고강도 콘크리트 폭렬 방지 공법 비교 연구 = A study Comparison about Spalling Prevention Method of High Strength Concrete

      한글로보기

      https://www.riss.kr/link?id=T11436463

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The present trend of architectural buildings can be described as high-rise and massive. Such tendency has inevitably has shot up the demand for high-strength concretes. In Korea, the buildings that are more than 60stories are being constructed in larg...

      The present trend of architectural buildings can be described as high-rise and massive. Such tendency has inevitably has shot up the demand for high-strength concretes. In Korea, the buildings that are more than 60stories are being constructed in large numbers. Of course, they make use of high-strength concrete. High-strength concretes are produced through composite materials and high-performance water-reducing agents.
      The reduction of contained water supports the maintenance of water tightness, and the compressive strength upholds 40 ~ 120Mpa. In comparison to other materials, concretes have much lower thermal conduction rate, and it excels in energy absorbance at high temperatures. Therefore, the concretes have earned the reputation of being practical, fireproof, and durable.
      However, high-strength concretes are more vulnerable regarding loss of strength than regular concretes when the heat is measured at 40 0℃. Also, the surface cracks as well. The heat prevents the outflow of water vapor pressure formed inside the concretes. Thus, the water vapor pressure accumulates inside, and when the tension exceeds its limit on the concrete surface, the pressure outflows and causes an instant explosion.
      The internal explosion of high-strength concrete harms the covering depth, and escalates the temperature of the reinforced rod. Since this eventually weakens the stress within the reinforced concrete structure, the internal explosion caused by fire remains a crucial assignment for the high-strength concrete.
      Therefore, the most suitable construction method aimed at preventing the internal explosion must be decided and implemented in accordance to the construction condition, strength of the concrete, architectural environment, and the applied load.
      However, in Korea, thec onditions of the concrete structure is usually ignored, and thus, the methods aimeds olely for prevention of explosion is being considered. These may beeffective in the short-term, but it makes it impossible to follow-up on the deteriorating progress of the structure. Also, it implies different problems, such as pushing the deterioration forward.
      Therefore, to maximize the prevention of internal explosion, it is important to understand the materials, structure, usage, strength, interior material, flammable condition. Based on the collected data, the solution to prevent explosion must be applied thereafter.
      It is revealed that the six construction methods covered in this thesis have respectively shown different performance related to explosion prevention.
      However, a more organized research on workability, financial efficiency, and maintenance must be carried out. This thesis will help the reader to understand the aforementioned factors and to analyze the strength and weakness. The study will serve as a base material for the application in the actual construction work environment.

      더보기

      목차 (Table of Contents)

      • 1. 서론 = 1
      • 1.1 연구배경 = 1
      • 1.2 연구 방법 = 2
      • 2. 국내외 내화관련 기준 = 3
      • 2.1 한국 = 3
      • 1. 서론 = 1
      • 1.1 연구배경 = 1
      • 1.2 연구 방법 = 2
      • 2. 국내외 내화관련 기준 = 3
      • 2.1 한국 = 3
      • 2.2 일본 = 7
      • 2.3 영국 = 12
      • 2.4 호주 = 14
      • 3. 고강도 콘크리트 폭렬에 대한 고찰 = 19
      • 3.1 콘크리트 폭렬 이론 = 19
      • 3.1.1 표층 폭렬 = 20
      • 3.1.2 심층 폭렬 = 21
      • 3.2 콘크리트의 화재시 특성 = 21
      • 3.2.1 고강도 콘크리트의 일반적 특성 = 21
      • 3.2.2 가열 온도에 따른 재료 특성 = 22
      • 3.2.3 고온에 노출된 고강도콘크리트의 역학적 특성 = 23
      • 3.2.4 고온에서의 고강도 콘크리트의 폭렬 = 31
      • 4. 고강도 콘크리트 폭렬 방지 공법 개요 = 35
      • 4.1 뿜칠공법 = 35
      • 4.1.1 내화재료 뿜칠 공법 = 35
      • 4.2 부착공법 = 35
      • 4.2.1 석판재 부착공법 = 35
      • 4.2.2 내화보드 부착공법 = 36
      • 4.2.3 석고보드 부착공법 = 36
      • 4.3 혼입 공법 = 37
      • 4.3.1 PP섬유혼입공법 = 37
      • 4.3.2 강섬유혼입공법 = 37
      • 4.3.3 폐타이어 칩 혼입공법 = 38
      • 4.4 도장 공법 = 38
      • 4.4.1 내화도료 도장 공법 = 38
      • 4.5 복합 공법 = 39
      • 4.5.1 PP섬유 혼입+메탈라스 보강공법 = 39
      • 4.5.2 CFT(Concrete filled steel tube)공법+PP섬유혼입공법+내화도료도장공법 = 40
      • 5. 고강도 콘크리트 폭렬 방지공법 성능 고찰. = 41
      • 5.1 시공성 고찰 = 41
      • 5.1.1 뿜칠공법 = 41
      • 5.1.2 부착공법 = 41
      • 5.1.3 혼입공법 = 42
      • 5.1.4 도장공법 = 44
      • 5.1.5 복합공법 = 44
      • 5.2 시공비 비교 = 45
      • 6. 결론 = 52
      • 참고문헌 = 54
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼