RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      UV-curing kinetics and performance development of <i>in situ</i> curable 3D printing materials

      한글로보기

      https://www.riss.kr/link?id=A107703435

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>As three-dimensional (3D) printing technology is emerging as an alternative way of manufacturing, the high resolution 3D printing device often requires systems such as drop jetting printing of &...

      <P><B>Abstract</B></P> <P>As three-dimensional (3D) printing technology is emerging as an alternative way of manufacturing, the high resolution 3D printing device often requires systems such as drop jetting printing of <I>in situ</I> UV-curable photopolymers. Accordingly, the key issue is process control and its optimization to ensure dimensional accuracy, surface roughness, building orientation, and mechanical properties of printed structures, which are based on the time- and temperature-dependent glass transition temperature (<I>T<SUB>g</SUB> </I>) of the resin system under UV-curing. In this study, the UV-cure kinetics and <I>T<SUB>g</SUB> </I> development of a commercially available UV-curable acrylic resin system were investigated as a model system, using a differential scanning photocalorimeter (DPC). The developed kinetic model included the limited conversion of cure that could be achieved as a maximum at a specific isothermal curing temperature. Using the developed model, the <I>T<SUB>g</SUB> </I> was successfully described by a modified DiBenedetto equation as a function of UV curing. The developed kinetic model and <I>T<SUB>g</SUB> </I> development can be used to determine the 3D printing operating conditions for the overlay printing and <I>in situ</I> UV curing, which could ensure high-resolution and high-speed manufacturing with various UV-curing materials.</P> <P><B>Highlights</B></P> <P> <UL> <LI> UV-cure kinetic analysis were applied to a commercial Multi-jet 3D printing material. </LI> <LI> The developed kinetic model included the limited conversion of cure by temperature. </LI> <LI> The <I>T<SUB>g</SUB> </I> was described by a modified DiBenedetto equation as a function of UV curing. </LI> <LI> The developed kinetic model showed an excellent agreement to isothermal experiments. </LI> <LI> The overlay printing time for each isothermal temperature was determined. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼