RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      On the improvement of the stability robustness in the discrete-time LQ regulator

      한글로보기

      https://www.riss.kr/link?id=A106724553

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 이산시간 LQ 조절기의 안정도 강인성을 주파수 영역및 시간영역에서 고찰하고 그 향상책을 제시하낟. 주파수영역에서 강인성 척도인 궤환차행렬(return difference matrix) 의 최소특이치가 상태가중치 행렬과 제어가중치 행렬의 비와 반비례함을 보이고, 시간영역에서 매개변수의 변화에 대한 안정도 강인성 범위들을 얻는다. 이 범위들의 점근적 성질을 밝히기 위하여 LQ 궤환이득의 특이치들이 상태가중치 행렬과 제어기중치 행렬의 비의 증가함수 임을 보인다. 몇가지 조건하에서 시스템 행렬(입력행렬)에 대한 안정도 강인성 범위가 상태 가중치 행렬과 제어가중치 행렬의 비가 증가(감소)함에 따라서 증가함을 보이고, 이러한 사실들을 예제를 통하여 검증한다.
      번역하기

      본 논문에서는 이산시간 LQ 조절기의 안정도 강인성을 주파수 영역및 시간영역에서 고찰하고 그 향상책을 제시하낟. 주파수영역에서 강인성 척도인 궤환차행렬(return difference matrix) 의 최소...

      본 논문에서는 이산시간 LQ 조절기의 안정도 강인성을 주파수 영역및 시간영역에서 고찰하고 그 향상책을 제시하낟. 주파수영역에서 강인성 척도인 궤환차행렬(return difference matrix) 의 최소특이치가 상태가중치 행렬과 제어가중치 행렬의 비와 반비례함을 보이고, 시간영역에서 매개변수의 변화에 대한 안정도 강인성 범위들을 얻는다. 이 범위들의 점근적 성질을 밝히기 위하여 LQ 궤환이득의 특이치들이 상태가중치 행렬과 제어기중치 행렬의 비의 증가함수 임을 보인다. 몇가지 조건하에서 시스템 행렬(입력행렬)에 대한 안정도 강인성 범위가 상태 가중치 행렬과 제어가중치 행렬의 비가 증가(감소)함에 따라서 증가함을 보이고, 이러한 사실들을 예제를 통하여 검증한다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼