RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Synthetic Data Generation Using GAN for RUL Prediction of Supercapacitors

      한글로보기

      https://www.riss.kr/link?id=A108068553

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The remaining useful life (RUL) prediction of supercapacitors is an important part of supercapacitors management system. To accurately predict the RUL of supercapacitor, a large amount of capacity data is required which can be difficult to acquire due...

      The remaining useful life (RUL) prediction of supercapacitors is an important part of supercapacitors management system. To accurately predict the RUL of supercapacitor, a large amount of capacity data is required which can be difficult to acquire due to privacy restrictions and limited access. Previous works have employed the use of deep learning models to synthetically generate data. However, a prerequisite ensuring the success of these models depends on their ability to preserve the temporal dynamics of the data. This paper presents a generative adversarial network (GAN) for synthetic data generation and a long short-term memory (LSTM) network for accurate RUL prediction. Firstly, the GAN model is employed for synthetic data generation and LSTM for RUL prediction. We show that the GAN model is capable of preserving the temporal dynamics of the original data and also prove that the generated data can be used to accurately carry out RUL prediction. Our proposed GAN model was able to achieve an accuracy of 85% after 500 epochs.
      The performance of the generated data set with the LSTM model achieved an RMSE of 0.29. The overall results show that synthetic data can be used to achieve excellent performance for RUL prediction.

      더보기

      참고문헌 (Reference)

      1 최경준 ; 최세영 ; 염성관 ; 조영식, "무인항공기의 비행시간 향상을 위한 배터리 관리 회로 구현" 한국통신학회 45 (45): 285-288, 2020

      2 Z. Wan, "Variational autoencoder based synthetic data generation for imbalanced learning" 10 (10): 1-7, 2017

      3 K. Vulrilehto, "Supercapacitors-basics and applications" 23 : 2014

      4 D. Eroldi, "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles" 183 (183): 45-50, 2016

      5 S. Liu, "Review on reliability of supercapacitors in energy storage applications" 278 (278): 54-36, 2020

      6 W. -S. Si, "Remaining useful life estimation—A review on the statistical data driven approaches" 213 (213): 1-14, 2011

      7 J. F. Sun, "Recent progresses in high energy density all pseudocapacitive-electrodematerials-based asymmetric supercapacitors" 5 (5): 9443-9464, 2017

      8 J. Chen, "Probabilistic analysis of hybrid energy systems using synthetic renewable and load data" Bournemouth Int. Centre Labour 4723-4728, 2017

      9 최경준 ; 최세영 ; 오장훈, "IoT 센서 노드 충전용 RF 에너지 하베스팅 회로 구현" 한국통신학회 44 (44): 755-758, 2019

      10 C. Zhang, "Generative adversarial network for synthetic time series data generation in smart grids" 1-6, 2018

      1 최경준 ; 최세영 ; 염성관 ; 조영식, "무인항공기의 비행시간 향상을 위한 배터리 관리 회로 구현" 한국통신학회 45 (45): 285-288, 2020

      2 Z. Wan, "Variational autoencoder based synthetic data generation for imbalanced learning" 10 (10): 1-7, 2017

      3 K. Vulrilehto, "Supercapacitors-basics and applications" 23 : 2014

      4 D. Eroldi, "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles" 183 (183): 45-50, 2016

      5 S. Liu, "Review on reliability of supercapacitors in energy storage applications" 278 (278): 54-36, 2020

      6 W. -S. Si, "Remaining useful life estimation—A review on the statistical data driven approaches" 213 (213): 1-14, 2011

      7 J. F. Sun, "Recent progresses in high energy density all pseudocapacitive-electrodematerials-based asymmetric supercapacitors" 5 (5): 9443-9464, 2017

      8 J. Chen, "Probabilistic analysis of hybrid energy systems using synthetic renewable and load data" Bournemouth Int. Centre Labour 4723-4728, 2017

      9 최경준 ; 최세영 ; 오장훈, "IoT 센서 노드 충전용 RF 에너지 하베스팅 회로 구현" 한국통신학회 44 (44): 755-758, 2019

      10 C. Zhang, "Generative adversarial network for synthetic time series data generation in smart grids" 1-6, 2018

      11 M. Pyne, "Generation of synthetic battery data with capacity variation" 476-480, 2019

      12 M. Lakshminarayanan, "Generating high-fidelity synthetic battery parameter data : solving sparse dataset challenges" 41-47, 2021

      13 T. Ma, "Development of hybrid batterysupercapacitor energy storage for remote area renewable energy systems" 10 (10): 58-63, 2014

      14 AU. Chokwitthaya, "Applying the Gaussian mixture model to generate large synthetic data from a small data set" 7 (7): 34-38, 2019

      15 M. Aszczur, "An optimisation and sizing of photovoltaic system with supercapacitor for improving selfconsumption" 3 (3): 26-19, 2020

      16 Y. Roh, "A survey on data collection for machine learning : A big data-ai integration perspective" 33 (33): 1328-1347, 2021

      17 R. Gu, "A novel battery/Ultracapacitor hybrid energy storage system analysis based on physics-based lithium-ion battery modelling" 1-6, 2015

      18 C. Hu, "A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities" 31 (31): 514-528, 2018

      19 J. Liu, "A multi-step predictor with a variable input pattern for system state forecasting" 23 (23): 1586-1599, 2009

      20 Z. S. Iro, "A brief review on electrode materials for supercapacitor" 11 (11): 10628-10643, 2016

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-11-07 학술지명변경 외국어명 : The Journal of the KICS -> The Journal of Korean Institute of Communications and Information Sciences KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.5 0.5 0.47
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.4 0.34 0.466 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼