RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      소비자 에이전트 기반 제품확산예측을 위한 역퍼지화 방법 비교분석 = Defuzzification Analysis for Consumer-Agent Based Diffusion Model

      한글로보기

      https://www.riss.kr/link?id=A60069050

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we focus on finding defuzzification methods which are appropriate for a consumer-agent based diffusion model to forecast product diffusion in a competitive automobile market. The consumer agent model defines product choice process by imitating word-of-mouth effect between consumers in a real market. We assume that information on products delivered by word-of-mouth and heterogeneous characteristics of consumers are described in linguistic terms, which are modeled with fuzzy numbers. Therefore, defuzzification method should be used for transforming the fuzzy numbers into crisp values for final product choice. Thus, effective defuzzification methods are necessary for the simulation of the agent model. We apply seven defuzzification methods to transform fuzzy operation for the product choice process of consumer agent into crisp value, and examine the appropriateness of each method by comparing its model data with real data.
      번역하기

      In this paper, we focus on finding defuzzification methods which are appropriate for a consumer-agent based diffusion model to forecast product diffusion in a competitive automobile market. The consumer agent model defines product choice process by im...

      In this paper, we focus on finding defuzzification methods which are appropriate for a consumer-agent based diffusion model to forecast product diffusion in a competitive automobile market. The consumer agent model defines product choice process by imitating word-of-mouth effect between consumers in a real market. We assume that information on products delivered by word-of-mouth and heterogeneous characteristics of consumers are described in linguistic terms, which are modeled with fuzzy numbers. Therefore, defuzzification method should be used for transforming the fuzzy numbers into crisp values for final product choice. Thus, effective defuzzification methods are necessary for the simulation of the agent model. We apply seven defuzzification methods to transform fuzzy operation for the product choice process of consumer agent into crisp value, and examine the appropriateness of each method by comparing its model data with real data.

      더보기

      참고문헌 (Reference)

      1 Watts, D. J., "Viral marketing for the real world" 85 (85): 22-23, 2007

      2 Goldenberg, J, "Using cellular automata modeling of the emergence of innovations" 63 (63): 293-308, 2001

      3 Libai, B., "The role of seeding in multi-market entry" 22 : 375-393, 2005

      4 Chatterjee, R, "The innovation diffusion process in a heterogeneous population: a micromodeling approach" 36 (36): 1057-1079, 1990

      5 Chou, C.-C., "The canonical representation of multiplication operation on triangular fuzzy numbers" 45 (45): 1601-1610, 2003

      6 Delre, S. A., "Targeting and timing promotional activities: an agent-based model for the takeoff of new products" 60 (60): 826-835, 2007

      7 Alkemade, F, "Strategies for the diffusion of innovations on social networks" 25 : 3-23, 2005

      8 Deng, H, "Simulation-based evaluation of defuzzification-based approaches to fuzzy multiattribute decision making" 36 (36): 968-977, 2006

      9 Janssen, M. A, "Simulating market dynamics: interactions between consumer psychology and social networks" 9 (9): 343-356, 2003

      10 Mahajan, V., "New-product diffusion models: From theory to practice, In New-product diffusion models, Norwell, Massachusetts" Kluwer academic publishers 3-24, 2000

      1 Watts, D. J., "Viral marketing for the real world" 85 (85): 22-23, 2007

      2 Goldenberg, J, "Using cellular automata modeling of the emergence of innovations" 63 (63): 293-308, 2001

      3 Libai, B., "The role of seeding in multi-market entry" 22 : 375-393, 2005

      4 Chatterjee, R, "The innovation diffusion process in a heterogeneous population: a micromodeling approach" 36 (36): 1057-1079, 1990

      5 Chou, C.-C., "The canonical representation of multiplication operation on triangular fuzzy numbers" 45 (45): 1601-1610, 2003

      6 Delre, S. A., "Targeting and timing promotional activities: an agent-based model for the takeoff of new products" 60 (60): 826-835, 2007

      7 Alkemade, F, "Strategies for the diffusion of innovations on social networks" 25 : 3-23, 2005

      8 Deng, H, "Simulation-based evaluation of defuzzification-based approaches to fuzzy multiattribute decision making" 36 (36): 968-977, 2006

      9 Janssen, M. A, "Simulating market dynamics: interactions between consumer psychology and social networks" 9 (9): 343-356, 2003

      10 Mahajan, V., "New-product diffusion models: From theory to practice, In New-product diffusion models, Norwell, Massachusetts" Kluwer academic publishers 3-24, 2000

      11 Hwang, C. L, "Multiple attribute decision making: methods and applications" Springer 1981

      12 Nelson, P., "Multiattribute utility models, In The Elgar companion to consumer research and economic psychology, Northampton, Massachusetts" Edward Elgar Publishing Limited 392-400, 1999

      13 Roberts, J. H, "Modelling multiattribute utility, risk, and belief dynamics for new consumer durable brand choice" 34 (34): 167-185, 1988

      14 Guseo, R, "Modelling a dynamic market potential: A class of automata networks for diffusion of innovations" 76 : 806-832, 2009

      15 Zimmermann, H.-J., "Fuzzy set theory and its application" Kluwer academic publishers 2001

      16 Rogers, E. M., "Diffusion of innovation 5nd ed" Free press 2003

      17 Watts, D. J, "Collective behavior of ‘small-world’ networks" 393 : 440-442, 1998

      18 Wilensky, U., "Center for connected learning and computer-based modeling" Northwestern University

      19 Kim, S., "Agent-based diffusion model for an automobile market with fuzzy TOPSIS-based product adoption process" PERGAMON-ELSEVIER SCIENCE LTD 38 (38): 7270-7276, 2011

      20 Bass, F. M., "A new product growth for model consumer durables" 15 (15): 215-227, 1969

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-08-11 학술지명변경 한글명 : 한국보전경영학회지 -> 한국경영공학회지 KCI등재
      2006-07-21 학회명변경 한글명 : 한국보전경영학회 -> 한국경영공학회
      영문명 : 미등록 -> Korea Management Engineers Society
      KCI등재
      2005-03-22 학술지등록 한글명 : 한국보전경영학회지
      외국어명 : 미등록
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.62 0.62 0.62
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.57 0.48 0.749 0.23
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼