RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      효율적인 ROLAP 큐브 생성 방법 = An Efficient ROLAP Cube Generation Scheme

      한글로보기

      https://www.riss.kr/link?id=A104246180

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      ROLAP(Relational Online Analytical Processing) is a process and methodology for a multidimensional data analysis that is essential to extract desired data and to derive value-added information from an enterprise data warehouse. In order to speed up query processing, most ROLAP systems pre-compute summary tables. This process is called `cube generation' and it mostly involves intensive table sorting stages. 1 showed that it is much faster to generate ROLAP summary tables indirectly using a MOLAP(multidimensional OLAP) cube generation algorithm. In this paper, we present such an indirect ROLAP cube generation algorithm that is fast and scalable. High memory utilization is achieved by slicing the input fact table along one or more dimensions before generating summary tables. High speed is achieved by producing summary tables from their smallest parents. We showed the efficiency of our algorithm through experiments.
      번역하기

      ROLAP(Relational Online Analytical Processing) is a process and methodology for a multidimensional data analysis that is essential to extract desired data and to derive value-added information from an enterprise data warehouse. In order to speed up qu...

      ROLAP(Relational Online Analytical Processing) is a process and methodology for a multidimensional data analysis that is essential to extract desired data and to derive value-added information from an enterprise data warehouse. In order to speed up query processing, most ROLAP systems pre-compute summary tables. This process is called `cube generation' and it mostly involves intensive table sorting stages. 1 showed that it is much faster to generate ROLAP summary tables indirectly using a MOLAP(multidimensional OLAP) cube generation algorithm. In this paper, we present such an indirect ROLAP cube generation algorithm that is fast and scalable. High memory utilization is achieved by slicing the input fact table along one or more dimensions before generating summary tables. High speed is achieved by producing summary tables from their smallest parents. We showed the efficiency of our algorithm through experiments.

      더보기

      국문 초록 (Abstract)

      ROLAP(Relational Online Analytical Processing)은 다차원적 데이타 분석을 위한 제반 기술로써, 전사적 데이타 웨어하우스로부터 고부가가치를 창출하는데 필수적인 기술이다. 질의처리 성능을 높이기 위해서 대부분의 ROLAP 시스템들은 집계 테이블들을 미리 계산해 둔다. 이를 큐브 생성이라고 하며, 이 과정에서 기존의 방법들은 데이타를 여러 차례 정렬해야 하고 이는 큐브 생성의 성능을 저하시키는 큰 요인이다. 1 은 MOLAP 큐브 생성 알고리즘을 통해 간접적으로 ROLAP 큐브를 생성하는 것이 훨씬 빠르다는 것을 보였다. 본 연구에서도 MOLAP 큐브 생성 알고리즘을 사용한 신속하고 확장적인 ROLAP 큐브 생성 알고리즘을 제시하였다. 분석할 입력 사실 테이블을 적절하게 조각내어 메모리 효율을 높였고, 집계 테이블들을 최소 부모 집계 테이블로부터 생성하도록 하여 큐브 생성 시간을 단축하였다. 제안한 방법의 효율성은 실험을 통해 검증하였다.
      번역하기

      ROLAP(Relational Online Analytical Processing)은 다차원적 데이타 분석을 위한 제반 기술로써, 전사적 데이타 웨어하우스로부터 고부가가치를 창출하는데 필수적인 기술이다. 질의처리 성능을 높이기 ...

      ROLAP(Relational Online Analytical Processing)은 다차원적 데이타 분석을 위한 제반 기술로써, 전사적 데이타 웨어하우스로부터 고부가가치를 창출하는데 필수적인 기술이다. 질의처리 성능을 높이기 위해서 대부분의 ROLAP 시스템들은 집계 테이블들을 미리 계산해 둔다. 이를 큐브 생성이라고 하며, 이 과정에서 기존의 방법들은 데이타를 여러 차례 정렬해야 하고 이는 큐브 생성의 성능을 저하시키는 큰 요인이다. 1 은 MOLAP 큐브 생성 알고리즘을 통해 간접적으로 ROLAP 큐브를 생성하는 것이 훨씬 빠르다는 것을 보였다. 본 연구에서도 MOLAP 큐브 생성 알고리즘을 사용한 신속하고 확장적인 ROLAP 큐브 생성 알고리즘을 제시하였다. 분석할 입력 사실 테이블을 적절하게 조각내어 메모리 효율을 높였고, 집계 테이블들을 최소 부모 집계 테이블로부터 생성하도록 하여 큐브 생성 시간을 단축하였다. 제안한 방법의 효율성은 실험을 통해 검증하였다.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2014-09-01 평가 학술지 통합(기타)
      2013-04-26 학술지명변경 한글명 : 정보과학회논문지 : 데이타베이스</br>외국어명 : Journal of KIISE : Databases KCI등재
      2011-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼