Given operators $X_i$ and $Y_i$ (i = 1, 2, ${\cdots}$, n) acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A acting on $\mathcal{H}$ such that $AX_i$ = $Y_i$ for i= 1, 2, ${\cdots}$, n. In this article, if the r...
Given operators $X_i$ and $Y_i$ (i = 1, 2, ${\cdots}$, n) acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A acting on $\mathcal{H}$ such that $AX_i$ = $Y_i$ for i= 1, 2, ${\cdots}$, n. In this article, if the range of $X_k$ is dense in H for a certain k in {1, 2, ${\cdots}$, n), then the following are equivalent: (1) There exists a self-adjoint operator A in $\mathcal{B}(\mathcal{H})$ stich that $AX_i$ = $Y_i$ for I = 1, 2, ${\cdots}$, n. (2) $sup\{{\frac{{\parallel}{\sum}^n_{i=1}Y_if_i{\parallel}}{{\parallel}{\sum}^n_{i=1}X_if_i{\parallel}}:f_i{\in}H}\}$ < ${\infty}$ and < $X_kf,Y_kg$ >=< $Y_kf,X_kg$> for all f, g in $\mathcal{H}$.