RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Ultrasonic flow-through filtration of microparticles in a microfluidic channel using frequency sweep technique

      한글로보기

      https://www.riss.kr/link?id=A103787656

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Many studies have been conducted on the filtration of microparticles using the acoustic radiation force of ultrasonic standing wave. The present work concerns a flow-through particle filtration method by utilizing frequency varying ultrasound. The per...

      Many studies have been conducted on the filtration of microparticles using the acoustic radiation force of ultrasonic standing wave. The present work concerns a flow-through particle filtration method by utilizing frequency varying ultrasound. The periodical frequency sweep of the ultrasonic standing wave translocates particles across a microchannel, where particles in fluid flow are filtrated without barriers. The present filtration technique in a microfluidic channel was proposed conceptually in the 199 0s. However, its experimental realization on actual particles in a microfluidic channel has not been carried out in a notable way. Several sizes of polystyrene microspheres (10 µm to 90 µm) and silicon carbide (SiC) particles (37 µm) suspended in water were applied as a test sample. For filtration of those particles, a Y-branched microfluidic channel with one inlet and two outlets was made out of steel and acrylic as a form of modulized device. Ultrasound of a few MHz in band frequency (1.75 MHz to 3.05 MHz) was transmitted into one side of the channel wall to generate a standing wave field in fluid flow. The periodical frequency sweep operation showed successful filtration performance, whereby particles in water flowed into one outlet and purified water flowed into the other outlet of the Y branch of the channel.

      더보기

      참고문헌 (Reference)

      1 G. Whiteworth, "Transport and harvesting of suspended particles using modulated ultrasound" 29 : 439-444, 1990

      2 B. Lipkens, "The effect of frequency sweeping and fluid flow on particle trajectories in ultrasonic standing waves" 8 (8): 667-677, 2008

      3 F. Petersson, "Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels" 129 : 938-943, 2004

      4 T. L. Tolt, "Separation of dispersed phases from liquids in acoustically driven chambers" 48 : 527-540, 1992

      5 K. Dholakia, "Optical micromanipulation" 37 (37): 42-55, 2008

      6 T. Kozuka, "One- Dimensional Transportation of Particles Using an Ultrasonic Standing Wave" 179-185, 1995

      7 A. Ashkin, "Observation of a single-beam gradient force optical trap for dielectric particles" 11 (11): 288-290, 1986

      8 E. Benes, "Method and apparatus for separating particles"

      9 J. E. Molloy, "Lights, action: Optical tweezers" 43 (43): 241-258, 2002

      10 N. Gadish, "High-throughput positivedielectrophoretic bioparticle microconcentrator" 78 (78): 7870-7876, 2006

      1 G. Whiteworth, "Transport and harvesting of suspended particles using modulated ultrasound" 29 : 439-444, 1990

      2 B. Lipkens, "The effect of frequency sweeping and fluid flow on particle trajectories in ultrasonic standing waves" 8 (8): 667-677, 2008

      3 F. Petersson, "Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels" 129 : 938-943, 2004

      4 T. L. Tolt, "Separation of dispersed phases from liquids in acoustically driven chambers" 48 : 527-540, 1992

      5 K. Dholakia, "Optical micromanipulation" 37 (37): 42-55, 2008

      6 T. Kozuka, "One- Dimensional Transportation of Particles Using an Ultrasonic Standing Wave" 179-185, 1995

      7 A. Ashkin, "Observation of a single-beam gradient force optical trap for dielectric particles" 11 (11): 288-290, 1986

      8 E. Benes, "Method and apparatus for separating particles"

      9 J. E. Molloy, "Lights, action: Optical tweezers" 43 (43): 241-258, 2002

      10 N. Gadish, "High-throughput positivedielectrophoretic bioparticle microconcentrator" 78 (78): 7870-7876, 2006

      11 C. Grenvall, "Harmonic microchip acoustophoresis: A route to online raw milk sample precondition in protein and lipid content quality control" 81 : 6195-6200, 2009

      12 J. J. Hawkes, "Force field particle filter, combining ultrasound standing waves and laminar flow" 75 (75): 213-222, 2001

      13 J. J. Hawkes, "Filtration of bacteria and yeast by ultrasound-enhanced Sedimentation" 82 : 39-47, 1997

      14 J. J. Hawkes, "Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel" 4 : 446-452, 2004

      15 K. Yasuda, "Concentration and Fractionation of small particles in Liquid by Ultrasoud" 34 : 2715-2720, 1995

      16 F. Petersson, "Carrier medium exchange through ultrasonic particle switching in microfluidic channels" 77 : 1216-1221, 2005

      17 P. Augustsson, "Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing" 164 : 269-277, 2009

      18 M. Evander, "Acoustophoresis in wet-etched glass chips" 80 (80): 5178-5185, 2008

      19 K. Yosioka, "Acoustic radiation pressure on a compressible sphere" 5 : 167-173, 1955

      20 A. Nilsson, "Acoustic control of suspended particles in micro fluidic chips" 4 (4): 131-135, 2004

      21 A. Ashkin, "Acceleration and trapping of particles by radiation pressure" 24 (24): 156-159, 1970

      22 Y. S. Lee, "A smart device for particle separation in water using ultrasonic standing waves" 6 (6): 173-183, 2006

      23 N. R. Harris, "A silicon microfluidic ultrasonic separator" 95 : 425-434, 2003

      24 A. Neild, "A micro-particle positioning technique combinign an ultrasonic manipulator and a micrograpper" 16 : 1562-1570, 2006

      25 J. J. Hawkes, "A continuous flow ultrasonic cell-filtering method" 19 : 57-62, 1996

      26 K. Shono, "A Micro Step Motion of Poly. Si Slider and Roter" 421-448, 1993

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2012-11-05 학술지명변경 한글명 : 대한기계학회 영문 논문집 -> Journal of Mechanical Science and Technology KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-19 학술지명변경 한글명 : KSME International Journal -> 대한기계학회 영문 논문집
      외국어명 : KSME International Journal -> Journal of Mechanical Science and Technology
      KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.51 0.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.74 0.66 0.369 0.12
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼