RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Noncontact laser ultrasonic crack detection for plates with additional structural complexities

      한글로보기

      https://www.riss.kr/link?id=A107686291

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>This article presents a new noncontact laser ultrasonic wavefield imaging technique for detecting subsurface cracks in metallic plates with additional structural complexities. The proposed technique offers noncontact, automated, and baseline-free crack diagnosis for complex metal structures with potential to field structural health monitoring applications. First, a complete noncontact laser ultrasonic wavefield imaging system is introduced, and its working principle is presented. Then, a self-referencing frequency–wavenumber (<I>f</I>-<I>k</I>) filter is developed for instantaneous crack detection. The self-referencing <I>f</I>-<I>k</I> filter isolates crack-induced features from the ultrasonic wavefield images obtained only from the current state of the target structure using the noncontact laser ultrasonic wavefield imaging system. Finite element analyses are employed to investigate the characteristics of laser-generated ultrasonic waves and validate the proposed self-referencing <I>f</I>-<I>k</I> filter. Finally, the proposed technique is experimentally validated using asymmetrically tapered and vertically stiffened aluminum plates. The numerical and experimental results confirm that subsurface cracks are well identified and localized. The uniqueness of this study lies in that crack damage in plates even with additional structural features can be autonomously detected without using baseline data from the pristine condition of a target structure and with no sensor placement.</P>
      번역하기

      <P>This article presents a new noncontact laser ultrasonic wavefield imaging technique for detecting subsurface cracks in metallic plates with additional structural complexities. The proposed technique offers noncontact, automated, and baseline-...

      <P>This article presents a new noncontact laser ultrasonic wavefield imaging technique for detecting subsurface cracks in metallic plates with additional structural complexities. The proposed technique offers noncontact, automated, and baseline-free crack diagnosis for complex metal structures with potential to field structural health monitoring applications. First, a complete noncontact laser ultrasonic wavefield imaging system is introduced, and its working principle is presented. Then, a self-referencing frequency–wavenumber (<I>f</I>-<I>k</I>) filter is developed for instantaneous crack detection. The self-referencing <I>f</I>-<I>k</I> filter isolates crack-induced features from the ultrasonic wavefield images obtained only from the current state of the target structure using the noncontact laser ultrasonic wavefield imaging system. Finite element analyses are employed to investigate the characteristics of laser-generated ultrasonic waves and validate the proposed self-referencing <I>f</I>-<I>k</I> filter. Finally, the proposed technique is experimentally validated using asymmetrically tapered and vertically stiffened aluminum plates. The numerical and experimental results confirm that subsurface cracks are well identified and localized. The uniqueness of this study lies in that crack damage in plates even with additional structural features can be autonomously detected without using baseline data from the pristine condition of a target structure and with no sensor placement.</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼