Background: The Korea Risk Information Surveillance System (K-RISS) was developed to enable the early detection of food and drug safety-related issues. Its goal is to deliver real-time risk indicators generated from ongoing food and drug risk monitori...
Background: The Korea Risk Information Surveillance System (K-RISS) was developed to enable the early detection of food and drug safety-related issues. Its goal is to deliver real-time risk indicators generated from ongoing food and drug risk monitoring. However, the existing K-RISS system suffers under several limitations.
Objectives: This study aims to augment K-RISS with more detailed indicators and establish a severity standard that takes into account structural changes in the daily time series of K-RISS values.
Methods: First, a Delphi survey was conducted to derive the required weights. Second, a control chart, commonly used in statistical process controls, was utilized to detect outliers and establish caution, attention, and serious levels for K-RISS values. Furthermore, Bai and Perron’s method was employed to determine structural changes in K-RISS time series.
Results: The study incorporated ‘closeness to life’ and ‘sustainability’ indicators into K-RISS. It obtained the necessary weights through a survey of experts for integrating variables, combining indicators by data source, and aggregating sub K-RISS values. We defined caution, attention, and serious levels for both average and maximum values of daily K-RISS. Furthermore, when structural changes were detected, leading to significant variations in daily K-RISS values according to different periods, the study systematically verified these changes and derived respective severity levels for each period.
Conclusions: This study enhances the existing K-RISS system and introduces more advanced indicators.
K-RISS is now more comprehensively equipped to serve as a risk warning index. The study has paved the way for an objective determination of whether the food safety risk index surpasses predefined thresholds through the application of severity levels.