RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅 = Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite

      한글로보기

      https://www.riss.kr/link?id=A108401974

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoli...

      The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoliation (LPE) which utilizes ultrasonic waves or shear stresses to exfoliate bulk graphite into graphene flakes that are a few layers thick. Graphene dispersion produced via LPE can be transformed into graphene ink to further boost graphene’s applications, but producing high-quality graphene more economically remains a challenge. To overcome this shortcoming, an advanced LPE process should be developed that uses relatively cheap natural graphite as a graphene source. In this study, a flow-LPE process was used to exfoliate natural graphite to produce graphene that was three times cheaper and seven times larger than synthetic graphite. The optimal exfoliation conditions in the flow-LPE process were determined in order to produce high-quality graphene flakes. In addition, the structural and electrical properties of the flakes were characterized. The electrical properties of the exfoliated graphene were investigated by carrying out an ink formulation process to prepare graphene ink suitable for inkjet printing, and fabricating a printed graphene pattern. By utilizing natural graphite, this study offers a potential protocol for graphene production, ink formulation, and printed graphene devices in a more industrial-comparable manner.

      더보기

      국문 초록 (Abstract)

      그래핀의 우수한 기계적, 전기적, 열적 성질은 최근 몇 년 동안 여러 연구 분야에서 지대한 관심을 불러일으켰다. 그래핀을 생산하는 대표적인 방법인 습식공정 중 액상박리(liquid-phase exfoliat...

      그래핀의 우수한 기계적, 전기적, 열적 성질은 최근 몇 년 동안 여러 연구 분야에서 지대한 관심을 불러일으켰다. 그래핀을 생산하는 대표적인 방법인 습식공정 중 액상박리(liquid-phase exfoliation, LPE)는 초음파 및 높은 전단응력을 이용하여 벌크흑연을 그래핀으로 박리하는 기술이다. 액상박리에 의해 생산된 그래핀 분산액은 그래핀 잉크로 전환되어 그 활용폭을 더 넓힐 수 있는 장점이있지만 고품질의 그래핀을 생산하고 가격경쟁력을 확보해야 한다. 위 조건을 만족하기 위해서 그래핀을 효율적으로 박리할 수있는 공정 확보와 더불어 상대적으로 가격이 저렴한 천연흑연 기반의 그래핀 분산액 및 잉크를 생산해야 한다. 본 연구에서는합성흑연 보다 약 3배 정도 저렴하고 그 크기는7배 이상 큰 천연흑연을 흐름반응기 액상박리 공정을 이용하여 박리를 시도하고공정의 최적화와 박리된 그래핀의 구조적, 전기적 특성을 분석하였다. 천연흑연 기반 그래핀의 전기적 특성을 분석하기 위해잉크 정제화 공정을 거쳐 그래핀 잉크를 생산하고 인쇄 장비를 사용하여 그래핀 패턴을 제작하였다. 본 연구를 통해 보다 경제적인그래핀 분산액 및 잉크를 생산하고 그래핀 인쇄 소자를 개발할 수 있는 방법을 제시할 수 있을 것으로 기대된다.

      더보기

      참고문헌 (Reference) 논문관계도

      1 Parvez, K, "Water-based and inkjet printable inks made by electrochemically exfoliated graphene" 149 : 213-221, 2019

      2 Choi, C. H, "Visible to infrared plasmonic absorption from silver nanostructures enabled by microreactor-assisted solution deposition" 19 (19): 1265-1272, 2017

      3 Chae, H, "Thermoelectric temperature sensors by printingwith a simple office inkjet printer" 4 : 151-155, 2016

      4 Jo, G, "The application of graphene as electrodes in electrical and optical devices" 23 (23): 112001-, 2012

      5 Htwe, Y. Z. N, "Surfactant-assisted water-based graphene conductive inks for flexible electronic application" 125 : 402-412, 2021

      6 Backes, C, "Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets" 8 (8): 4311-4323, 2016

      7 Paton, K. R, "Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids" 13 (13): 624-630, 2014

      8 Li, J, "Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing" 11 (11): 8249-8256, 2017

      9 Peña-Bahamonde, J, "Recent advances in graphene-based biosensor technology with applications in life sciences" 16 (16): 1-17, 2018

      10 Choi, C. H, "Rapid exfoliation for few-layer enriched black phosphorus dispersion via a superhydrophobic silicon-nanowire-embedded microfluidic process" 22 (22): 699-706, 2020

      1 Parvez, K, "Water-based and inkjet printable inks made by electrochemically exfoliated graphene" 149 : 213-221, 2019

      2 Choi, C. H, "Visible to infrared plasmonic absorption from silver nanostructures enabled by microreactor-assisted solution deposition" 19 (19): 1265-1272, 2017

      3 Chae, H, "Thermoelectric temperature sensors by printingwith a simple office inkjet printer" 4 : 151-155, 2016

      4 Jo, G, "The application of graphene as electrodes in electrical and optical devices" 23 (23): 112001-, 2012

      5 Htwe, Y. Z. N, "Surfactant-assisted water-based graphene conductive inks for flexible electronic application" 125 : 402-412, 2021

      6 Backes, C, "Spectroscopic metrics allow in situ measurement of mean size and thickness of liquid-exfoliated few-layer graphene nanosheets" 8 (8): 4311-4323, 2016

      7 Paton, K. R, "Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids" 13 (13): 624-630, 2014

      8 Li, J, "Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing" 11 (11): 8249-8256, 2017

      9 Peña-Bahamonde, J, "Recent advances in graphene-based biosensor technology with applications in life sciences" 16 (16): 1-17, 2018

      10 Choi, C. H, "Rapid exfoliation for few-layer enriched black phosphorus dispersion via a superhydrophobic silicon-nanowire-embedded microfluidic process" 22 (22): 699-706, 2020

      11 Pei, L, "Rapid and efficient intense pulsed light reduction of graphene oxide inks for flexible printed electronics" 7 (7): 51711-51720, 2017

      12 Htwe, Y. Z. N, "Optimization of graphene conductive ink using solvent exchange techniques for flexible electronics applications" 274 : 116719-, 2021

      13 Falkovsky, L. A, "Optical properties of graphene" 129 (129): 012004-, 2008

      14 Cohen-Tanugi, D, "Mechanical strength of nanoporous graphene as a desalination membrane" 14 (14): 6171-6178, 2014

      15 Obraztsov, Alexander N, "Making graphene on a large scale" 4 (4): 212-213, 2009

      16 Coleman, J. N, "Liquid-phase exfoliation of nanotubes and graphene" 19 (19): 3680-3695, 2009

      17 Coleman, J. N, "Liquid exfoliation of defect-free graphene" 46 (46): 14-22, 2013

      18 Coleman, J. N, "Liquid exfoliation of defect-free graphene" 46 (46): 14-22, 2013

      19 Shi, P. C, "Large-scale production of high-quality graphene sheets by a non-electrified electrochemical exfoliation method" 3 (3): 507-513, 2018

      20 Jun, H. Y, "Integrated graphene study with advanced liquid-phase exfoliation, general inkformulation for diverse printing processes, and high-performing printed energy storage device revealing rheological impact on printed graphene device"

      21 Torrisi, F, "Inkjet-printed graphene electronics" 6 (6): 2992-3006, 2012

      22 Song, J. W, "Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern" 19 (19): 095702-, 2008

      23 Basak, I, "Inkjet printing of PEDOT : PSS based conductive patterns for 3D forming applications" 12 (12): 2915-, 2020

      24 Li, J, "Inkjet printing of MoS2" 24 (24): 6524-6531, 2014

      25 Jun, H. Y, "Inkjet Printing of Few‐Layer Enriched Black Phosphorus Nanosheets for Electronic Devices" 7 (7): 2100577-, 2021

      26 Jun, H. Y, "Ink formulation and printing parameters for inkjet printing of two dimensional materials : a mini review" 11 (11): 3441-, 2021

      27 Jang, D, "Influence of fluid physical properties on ink-jet printability" 25 (25): 2629-2635, 2009

      28 Hernandez, Y, "High-yield production of graphene by liquid-phase exfoliation of graphite" 3 (3): 563-568, 2008

      29 Lotya, M, "High-concentration, surfactant-stabilized graphene dispersions" 4 (4): 3155-3162, 2010

      30 Khan, U, "High-concentration solvent exfoliation of graphene" 6 (6): 864-871, 2010

      31 Phiri, J, "High-concentration shear-exfoliated colloidal dispersion of surfactant-polymerstabilized few-layer graphene sheets" 52 (52): 8321-8337, 2017

      32 Garcia de Abajo, F. J, "Graphene plasmonics : challenges and opportunities" 1 (1): 135-152, 2014

      33 Li, X, "Graphene hybridization for energy storage applications" 47 (47): 3189-3216, 2018

      34 O’Neill, A, "Graphene dispersion and exfoliation in low boiling point solvents" 115 (115): 5422-5428, 2011

      35 Liu, W, "Fast production of high-quality graphene via sequential liquid exfoliation" 7 (7): 27027-27030, 2015

      36 Bahadır, E. B, "Applications of graphene in electrochemical sensing and biosensing" 76 : 1-14, 2016

      37 Choi, C. H, "Air-water interfacial fluidic sonolysis in superhydrophobic silicon-nanowire-embedded system for fast water treatment" 358 : 1594-1600, 2019

      38 Da Costa, T. H, "A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes" 4 (4): S3044-, 2015

      39 Hu, G, "A general ink formulation of 2D crystals for wafer-scale inkjet printing" 2020

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼