RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      A “Signal On” Photoelectrochemical Biosensor Based on Bismuth@N,O‐Codoped‐Carbon Core‐Shell Nanohybrids for Ultrasensitive Detection of Telomerase in HeLa Cells

      한글로보기

      https://www.riss.kr/link?id=O120653317

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2018년

      • 작성언어

        -

      • Print ISSN

        0947-6539

      • Online ISSN

        1521-3765

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        3677-3682   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 소장기관
      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Core‐shell nanohybrids (NHs) with good semiconducting properties are vital to promote optoelectronic, photocatalytic, biosensing and bioelectronics technologies. Although great process has been achieved, synthesis of NHs composed of semiconductor core and heteroatom‐doped nanocarbon shell remains a challenge, and their applications in photoelectronchemical (PEC) biosensors have not been explored. Herein, the synthesis and properties of a Bi nanocrystal and N,O‐codoped carbon (NOC) core–shell NHs (Bi@NOC) is described, which exhibits the typical semiconducting feature with the bandgap of 1.14 eV. Also, such NHs show good biocompatibility and their surfaces bear the carboxylic groups that facilitate further assembly of an amino‐modified primer DNA. By taking advantage of the excellent PEC activity of Bi@NOC NHs and the signal amplification effect of thioflavine‐T, a novel “signal on” PEC aptasensor for the detection of telomerase activity is constructed. The fabricated aptasensor can detect telomerase activity from 5.0×102 to 1.0×106 HeLa cells with a low detection limit of 60 cells. Also, the aptasensor shows a wide linear response ranges, high sensitivity and good reproducibility. This work not only enriches current core–shell NHs family but also offers a novel PEC biosensing platform for detecting telomerase activity that is helpful for early clinical diagnosis of cancer.
      Novel Bi@N,O‐codoped carbon core–shell nanohybrids have been synthesized, and shown the typical semiconducting feature. By taking advantage of their excellent photoelectrochemical (PEC) activity and the signal amplification effect of thioflavine‐T, a signal on PEC aptasensor for detecting telomerase in HeLa cells is further fabricated, which shows low detection limits, wide linear ranges, high sensitivity and good reproducibility.
      번역하기

      Core‐shell nanohybrids (NHs) with good semiconducting properties are vital to promote optoelectronic, photocatalytic, biosensing and bioelectronics technologies. Although great process has been achieved, synthesis of NHs composed of semiconductor co...

      Core‐shell nanohybrids (NHs) with good semiconducting properties are vital to promote optoelectronic, photocatalytic, biosensing and bioelectronics technologies. Although great process has been achieved, synthesis of NHs composed of semiconductor core and heteroatom‐doped nanocarbon shell remains a challenge, and their applications in photoelectronchemical (PEC) biosensors have not been explored. Herein, the synthesis and properties of a Bi nanocrystal and N,O‐codoped carbon (NOC) core–shell NHs (Bi@NOC) is described, which exhibits the typical semiconducting feature with the bandgap of 1.14 eV. Also, such NHs show good biocompatibility and their surfaces bear the carboxylic groups that facilitate further assembly of an amino‐modified primer DNA. By taking advantage of the excellent PEC activity of Bi@NOC NHs and the signal amplification effect of thioflavine‐T, a novel “signal on” PEC aptasensor for the detection of telomerase activity is constructed. The fabricated aptasensor can detect telomerase activity from 5.0×102 to 1.0×106 HeLa cells with a low detection limit of 60 cells. Also, the aptasensor shows a wide linear response ranges, high sensitivity and good reproducibility. This work not only enriches current core–shell NHs family but also offers a novel PEC biosensing platform for detecting telomerase activity that is helpful for early clinical diagnosis of cancer.
      Novel Bi@N,O‐codoped carbon core–shell nanohybrids have been synthesized, and shown the typical semiconducting feature. By taking advantage of their excellent photoelectrochemical (PEC) activity and the signal amplification effect of thioflavine‐T, a signal on PEC aptasensor for detecting telomerase in HeLa cells is further fabricated, which shows low detection limits, wide linear ranges, high sensitivity and good reproducibility.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼